11 research outputs found

    Nondata-Aided Rician Parameters Estimation With Redundant GMM for Adaptive Modulation in Industrial Fading Channel

    Get PDF
    Wireless networks have been widely utilized in industries, where wireless links are challenged by the severe nonstationary Rician fading channel, which requires online link quality estimation to support high-quality wireless services. However, most traditional Rician estimation approaches are designed for channel measurements and work only with nonmodulated symbols. Then, the online Rician estimation usually requires a priori aiding pilots or known modulation order to cancel the modulation interference. This article proposes a nondata-Aided method with redundant Gaussian mixture model (GMM). The convergence paradigm of GMM with redundant subcomponents has been analyzed, guided by which the redundant subcomponents can be iteratively discriminated to approach the global optimization. By further adopting the constellation constraint, the probability to identify the redundant subcomponent is significantly increased. As a result, accurate estimation of the Rician parameters can be achieved without additional overhead. Experiments illustrate not only the feasibility but also the near-optimal accuracy

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    A Stochastic Geometry approach towards Green Communications in 5G

    Get PDF
    In this dissertation, we investigate two main research directions towards net- work efficiency and green communications in heterogeneous cellular networks (HetNets) as a promising network structure for the fifth generation of mobile systems. In order to analyze the networks, we use a powerful mathematical tool, named stochastic geometry. In our research, first we study the performance of MIMO technology in single-tier and two-tier HetNets. In this work, we apply a more realistic network model in which the correlation between tiers is taken into account. Comparing the obtained results with the commonly used model shows performance enhancement and greater efficiencies in cellular networks. As the second part of our research, we apply two Cell Zooming (CZ) techniques to HetNets. With focus on green communications, we present a K−tier HetNet in which BSs are only powered by energy har- vesting. Despite the uncertain nature of energy arrivals, combining two CZ techniques, namely telescopic and ON/OFF scenarios, enables us to achieve higher network performance in terms of the coverage and blocking probabilities while reducing the total power consumption and increasing the energy and spectral efficiencies

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Non-Data Aided Rician Parameters Estimation in Temporal Fading Channel With 3 DoFs Gaussian Mixture Model

    Get PDF
    Rician distribution has been widely utilized to describe wireless fading channel. In the non-stationary temporal fading channel like industrial scenarios, both the specular and scattered components of the multi-path fading channel will be time varying. As a result, the online estimation of Rician parameters is necessary to provide stable wireless service. The traditional estimation approaches of Rician parameters are designed for channel measurement usage and therefore have to work in the data-aided mode for online estimation with modulated I/Q samples. To solve this problem, some non-data-aided algorithms have been proposed in recent years, but only valid in specific scenarios. In this paper, we formulate the estimation of Rician parameters from modulated I/Q samples as a two-dimensional Gaussian mixture model to provide a general non-data-aided Rician parameter estimation method. By involving a priori information of modulation scheme and the motivation of optimized gradient searching, the independent parameters in the maximum likelihood estimation can be significantly decreased to three, which leads to fast convergence of the modified expectation-maximization algorithm with high accuracy. The combination of these modifications has been finally formulated as a Rician mixture model. The numerical results and field measurements illustrate the feasibility of this methodology

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    corecore