16 research outputs found

    Development of a Portable Seat Cushion for the Estimation of Heart Rate Using Ballistocardiography

    Get PDF
    Cardiovascular diseases are a leading contributor of health problems all over the world and are the second leading cause of death. They are also the cause of significant economic burden, costing billions of dollars in healthcare every year. With an aging population, the strain on the healthcare system, both in terms of costs and care provision, is expected to worsen. Frequent cardiac assessment can provide essential information towards diagnosis, monitoring, and treatment, which can mitigate symptoms and improve health outcomes for people with conditions such as heart failure. This has led to increasing interest in cardiac assessment at home. Additionally, for some populations like people with limited mobility and older adults, long term vitals monitoring at a clinical setting is not feasible, making at-home monitoring more viable and economical. Most devices available for cardiac monitoring at home are wearables. While wearable technology can be accurate, it requires compliance and maintenance, which is not an ideal solution for all populations. For example, people who are not comfortable using wearables or people with a cognitive impairment may not want or be able to use wearables, which could exclude these user types from at home monitoring. Keeping these factors under consideration, the past decade has seen an increased interest in the development of technologies for Ambient Assisted Living (i.e., smart technologies integrated into a user's environment). These technologies have the potential for ongoing health monitoring in an unobtrusive manner. This thesis presents research into the development of a smart seat cushion for heart rate monitoring. The cushion is able to calculate the heart rate of a person seated on it by acquiring their Ballistocardiogram (BCG). BCG is a cardiovascular signal corresponding to the displacement of the body in response to the heart pumping blood at every heartbeat. The prototype seat cushion has load cells embedded inside it that sense the micromovements of the body and translate it to an electrical signal. An analog signal conditioning circuit amplifies and filters this signal to enhance the components corresponding to BCG before it is converted to digital form. A pilot study was conducted with twenty participants to acquire BCG in real-world scenarios: 1) sitting still, 2) reading, 3) using a computer, 4) watching TV, and 5) having a conversation. Heart rate was calculated using a novel algorithm based on Continuous Wavelet Transform by detecting the largest peaks (referred to as the J-peaks) in the BCG. Excluding three outliers, the algorithm is able to achieve an overall accuracy of 94.6% compared to gold standard Electrocardiography (ECG). This accuracy is observed to be as good as or better than those of existing wearable heart rate monitors. The seat cushion developed in this thesis research can serve as a portable solution for cardiac monitoring and can integrate into an ambient health monitoring system, offering continued monitoring of heart rate while requiring no perceived effort to operate it. Future work includes exploring different sensor configurations, machine learning based approaches for improving J-peaks detection, and real-time monitoring of heart rate

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Robust Algorithms for Unattended Monitoring of Cardiovascular Health

    Get PDF
    Cardiovascular disease is the leading cause of death in the United States. Tracking daily changes in one’s cardiovascular health can be critical in diagnosing and managing cardiovascular disease, such as heart failure and hypertension. A toilet seat is the ideal device for monitoring parameters relating to a subject’s cardiac health in his or her home, because it is used consistently and requires no change in daily habit. The present work demonstrates the ability to accurately capture clinically relevant ECG metrics, pulse transit time based blood pressures, and other parameters across subjects and physiological states using a toilet seat-based cardiovascular monitoring system, enabled through advanced signal processing algorithms and techniques. The algorithms described herein have been designed for use with noisy physiologic signals measured at non-standard locations. A key component of these algorithms is the classification of signal quality, which allows automatic rejection of noisy segments before feature delineation and interval extractions. The present delineation algorithms have been designed to work on poor quality signals while maintaining the highest possible temporal resolution. When validated on standard databases, the custom QRS delineation algorithm has best-in-class sensitivity and precision, while the photoplethysmogram delineation algorithm has best-in-class temporal resolution. Human subject testing on normative and heart failure subjects is used to evaluate the efficacy of the proposed monitoring system and algorithms. Results show that the accuracy of the measured heart rate and blood pressure are well within the limits of AAMI standards. For the first time, a single device is capable of monitoring long-term trends in these parameters while facilitating daily measurements that are taken at rest, prior to the consumption of food and stimulants, and at consistent times each day. This system has the potential to revolutionize in-home cardiovascular monitoring

    Recent development of respiratory rate measurement technologies

    Get PDF
    Respiratory rate (RR) is an important physiological parameter whose abnormity has been regarded as an important indicator of serious illness. In order to make RR monitoring simple to do, reliable and accurate, many different methods have been proposed for such automatic monitoring. According to the theory of respiratory rate extraction, methods are categorized into three modalities: extracting RR from other physiological signals, RR measurement based on respiratory movements, and RR measurement based on airflow. The merits and limitations of each method are highlighted and discussed. In addition, current works are summarized to suggest key directions for the development of future RR monitoring methodologies

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    New methods for continuous non-invasive blood pressure measurement

    Get PDF
    Hlavním cílem této práce je nalezení nové metodiky pro měření kontinuálního neinvazivního krevního tlaku na základě rychlosti šíření pulzní vlny v krevním řečišti. Práce se opírá o rešerši zabývající se základním modelem pro stanovení kontinuálního neinvazivního krevního tlaku na základě měření zpoždění pulzní vlny a jeho rozšířením. Z informací získaných z rešerše se upravila metodika měření doby zpoždění pulzní vlny / rychlosti šíření pulzní vlny, aby bylo možné docílit přesnějších výsledků a omezit tak lidský faktor, který způsobuje významnou nepřesnost vlivem nedokonalého rozmístění senzorů. Rešerše se rovněž podrobně zabývá modely pro stanovení kontinuálního neinvazivního krevního tlaku a jejich úprav zajištujících zvýšení přesnosti. Mezi úpravy modelů zejména patří vstupní parametry popisující krevní oběh - systémový cévní odpor, elasticita cév, tuhost cév. Práce se taky zabývá úpravami stávajícího modelu krevního řečiště pro bližší přizpůsobení fyzického modelu k reálnému cévnímu systému lidského těla. Mezi tyto úpravy patří i funkce baroreflexu či simulace různé tvrdosti stěny umělých cévních segmentů. Protože se jedná o simulační model krevního řečiště, důležitým krokem je také měření tlakové a objemové pulzní vlny, kde není možné využít konvenční senzory pro fotopletysmografii kvůli absenci částic pohlcující světlo. Na základě experimentálního měření pro různé nastavení modelu krevního řečiště bylo provedeno měření pulzní vlny pomocí tlakových a kapacitních senzorů s následným zpracováním měřených signálů a detekcí příznaků charakterizující pulzní vlnu. Na základě příznaku byly stanoveny predikční regresní modely, které vykazovaly dostatečnou přesnost jejich určení, a tak následovaly dvě metody pro získání parametru o tvrdosti cévní stěny na základě měřitelných parametrů. První metodou byl predikční regresní model, který vykazoval přesnost 74,1 % a druhou metodou byl adaptivní neuro-fuzzy inferenční systém, který vykazoval přesnost 98,7 %. Tyto stanovení rychlosti pulzní vlny bylo ověřeno dalším přímým měřením pulzní vlny a výsledky byly srovnány. Výsledkem disertační práce je určení rychlosti šíření pulzní vlny s využitím pouze jednoho pletysmografického senzoru bez nutnosti měření na dvou různých místech s přesným měřením vzdálenosti a možnosti aplikace v klinické praxi.The main objective of this work is to find a new methodology for measuring continuous non-invasive blood pressure based on the pulse wave velocity in the vascular system. The work is based on the literature research of the basic model for the determination of non-invasive continuous blood pressure based on the measurement of pulse transit time. From the information obtained from the review, the methodology of measuring the pulse transit time/pulse wave velocity was modified in order to achieve more accurate results and to reduce the human factor that causes significant inaccuracy due to imperfect sensor placement. The review discusses in detail the models for continuous non-invasive blood pressure estimation and their modifications to ensure increased accuracy. In particular, model modifications include input parameters describing blood circulation - systemic vascular resistance, vascular elasticity, and vascular stiffness. The thesis deals with modifications to the existing physical vascular model to more closely mimic the real vascular system of the human body. These modifications include the baroreflex function or the simulation of different wall hardness of artificial arterial segments. As this is a simulation model of the vascular system, the measurement of pressure and volume pulse wave is also an important step, where it is not possible to use photoplethysmography method due to the absence of light absorbing particles. Based on the experimental measurements for different settings of the vascular model, pulse wave measurements were performed using pressure and capacitive sensors with subsequent processing of the measured signals and detection of the pulse wave features. Predictive regression models were established based on the pulse wave features and showed sufficient accuracy in their determination, followed by two methods for obtaining the parameter on the hardness of the vascular wall based on the measurable parameters. The first method was a predictive regression model, which showed an accuracy of 74.1 %, and the second method was an adaptive neuro-fuzzy inference system, which showed an accuracy of 98.7 %. These pulse wave velocity determinations were verified by further direct pulse wave measurements and the results were compared. The dissertation results in the determination of pulse wave propagation velocity using only one plethysmographic sensor without the need for measurements at two different locations with accurate distance measurements and the possibility of application in clinical practice.450 - Katedra kybernetiky a biomedicínského inženýrstvívyhově

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF
    corecore