751 research outputs found

    Design and Implementation of a Stepped Frequency Continuous Wave Radar System for Biomedical Applications

    Get PDF
    There is a need to detect vital signs of human (e.g., the respiration and heart-beat rate) with noncontact method in a number of applications such as search and rescue operation (e.g. earthquakes, fire), health monitoring of the elderly, performance monitoring of athletes Ultra-wideband radar system can be utilized for noncontact vital signs monitoring and tracking of various human activities of more than one subject. Therefore, a stepped-frequency continuous wave radar (SFCW) system with wideband performance is designed and implemented for Vital signs detection and fall events monitoring. The design of the SFCW radar system is firstly developed using off-the-shelf discrete components. Later, the system is implemented using surface mount components to make it portable with low cost. The measurement result is proved to be accurate for both heart rate and respiration rate detection within ±5% when compared with contact measurements. Furthermore, an electromagnetic model has been developed using a multi-layer dielectric model of the human subject to validate the experimental results. The agreement between measured and simulated results is good for distances up to 2 m and at various subjects’ orientations with respect to the radar, even in the presence of more than one subject. The compressive sensing (CS) technique is utilized to reduce the size of the acquired data to levels significantly below the Nyquist threshold. In our demonstration, we use phase information contained in the obtained complex high-resolution range profile (HRRP) to derive the motion characteristics of the human. The obtained data has been successfully utilized for non-contact walk, fall and limping detection and healthcare monitoring. The effectiveness of the proposed method is validated using measured results

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: A comprehensive review

    Get PDF
    Today’s rapid growth of elderly populations and aging problems coupled with the prevalence of obstructive sleep apnea (OSA) and other health related issues have affected many aspects of society. This has led to high demands for a more robust healthcare monitoring, diagnosing and treatments facilities. In particular to Sleep Medicine, sleep has a key role to play in both physical and mental health. The quality and duration of sleep have a direct and significant impact on people’s learning, memory, metabolism, weight, safety, mood, cardio-vascular health, diseases, and immune system function. The gold-standard for OSA diagnosis is the overnight sleep monitoring system using polysomnography (PSG). However, despite the quality and reliability of the PSG system, it is not well suited for long-term continuous usage due to limited mobility as well as causing possible irritation, distress, and discomfort to patients during the monitoring process. These limitations have led to stronger demands for non-contact sleep monitoring systems. The aim of this paper is to provide a comprehensive review of the current state of non-contact Doppler radar sleep monitoring technology and provide an outline of current challenges and make recommendations on future research directions to practically realize and commercialize the technology for everyday usage

    NON-CONTACT TECHNIQUES FOR HUMAN VITAL SIGN DETECTION AND GAIT ANALYSIS

    Get PDF
    Human vital signs including respiratory rate, heart rate, oxygen saturation, blood pressure, and body temperature are important physiological parameters that are used to track and monitor human health condition. Another important biological parameter of human health is human gait. Human vital sign detection and gait investigations have been attracted many scientists and practitioners in various fields such as sport medicine, geriatric medicine, bio-mechanic and bio-medical engineering and has many biological and medical applications such as diagnosis of health issues and abnormalities, elderly care and health monitoring, athlete performance analysis, and treatment of joint problems. Thoroughly tracking and understanding the normal motion of human limb joints can help to accurately monitor human subjects or patients over time to provide early flags of possible complications in order to aid in a proper diagnosis and development of future comprehensive treatment plans. With the spread of COVID-19 around the world, it has been getting more important than ever to employ technology that enables us to detect human vital signs in a non-contact way and helps protect both patients and healthcare providers from potentially life-threatening viruses, and have the potential to also provide a convenient way to monitor people health condition, remotely. A popular technique to extract biological parameters from a distance is to use cameras. Radar systems are another attractive solution for non-contact human vital signs monitoring and gait investigation that track and monitor these biological parameters without invading people privacy. The goal of this research is to develop non-contact methods that is capable of extracting human vital sign parameters and gait features accurately. To do that, in this work, optical systems including cameras and proper filters have been developed to extract human respiratory rate, heart rate, and oxygen saturation. Feasibility of blood pressure extraction using the developed optical technique has been investigated, too. Moreover, a wideband and low-cost radar system has been implemented to detect single or multiple human subject’s respiration and heart rate in dark or from behind the wall. The performance of the implemented radar system has been enhanced and it has been utilized for non-contact human gait analysis. Along with the hardware, advanced signal processing schemes have been enhanced and applied to the data collected using the aforementioned radar system. The data processing algorithms have been extended for multi-subject scenarios with high accuracy for both human vital sign detection and gait analysis. In addition, different configurations of this and high-performance radar system including mono-static and MIMO have been designed and implemented with great success. Many sets of exhaustive experiments have been conducted using different human subjects and various situations and accurate reference sensors have been used to validate the performance of the developed systems and algorithms

    Non-Contact Detection of Vital Signs Based on Improved Adaptive EEMD Algorithm (July 2022)

    Get PDF
    Non-contact vital sign detection technology has brought a more comfortable experience to the detection process of human respiratory and heartbeat signals. Ensemble empirical mode decomposition (EEMD) is a noise-assisted adaptive data analysis method which can be used to decompose the echo data of frequency modulated continuous wave (FMCW) radar and extract the heartbeat and respiratory signals. The key of EEMD is to add Gaussian white noise into the signal to overcome the mode aliasing problem caused by original empirical mode decomposition (EMD). Based on the characteristics of clutter and noise distribution in public places, this paper proposed a static clutter filtering method for eliminating ambient clutter and an improved EEMD method based on stable alpha noise distribution. The symmetrical alpha stable distribution is used to replace Gaussian distribution, and the improved EEMD is used for the separation of respiratory and heartbeat signals. The experimental results show that the static clutter filtering technology can effectively filter the surrounding static clutter and highlight the periodic moving targets. Within the detection range of 0.5 m similar to 2.5 m, the improved EEMD method can better distinguish the heartbeat, respiration, and their harmonics, and accurately estimate the heart rate

    Non-Contact Human Motion Sensing Using Radar Techniques

    Get PDF
    Human motion analysis has recently gained a lot of interest in the research community due to its widespread applications. A full understanding of normal motion from human limb joint trajectory tracking could be essential to develop and establish a scientific basis for correcting any abnormalities. Technology to analyze human motion has significantly advanced in the last few years. However, there is a need to develop a non-invasive, cost effective gait analysis system that can be functional indoors or outdoors 24/7 without hindering the normal daily activities for the subjects being monitored or invading their privacy. Out of the various methods for human gait analysis, radar technique is a non-invasive method, and can be carried out remotely. For one subject monitoring, single tone radars can be utilized for motion capturing of a single target, while ultra-wideband radars can be used for multi-subject tracking. But there are still some challenges that need to be overcome for utilizing radars for motion analysis, such as sophisticated signal processing requirements, sensitivity to noise, and hardware imperfections. The goal of this research is to overcome these challenges and realize a non-contact gait analysis system capable of extracting different organ trajectories (like the torso, hands and legs) from a complex human motion such as walking. The implemented system can be hugely beneficial for applications such as treating patients with joint problems, athlete performance analysis, motion classification, and so on

    Remote Human Vital Sign Monitoring Using Multiple-Input Multiple-Output Radar at Millimeter-Wave Frequencies

    Get PDF
    Non-contact respiration rate (RR) and heart rate (HR) monitoring using millimeter-wave (mmWave) radars has gained lots of attention for medical, civilian, and military applications. These mmWave radars are small, light, and portable which can be deployed to various places. To increase the accuracy of RR and HR detection, distributed multi-input multi-output (MIMO) radar can be used to acquire non-redundant information of vital sign signals from different perspectives because each MIMO channel has different fields of view with respect to the subject under test (SUT). This dissertation investigates the use of a Frequency Modulated Continuous Wave (FMCW) radar operating at 77-81 GHz for this application. Vital sign signal is first reconstructed with Arctangent Demodulation (AD) method using phase change’s information collected by the radar due to chest wall displacement from respiration and heartbeat activities. Since the heartbeat signals can be corrupted and concealed by the third/fourth harmonics of the respiratory signals as well as random body motion (RBM) from the SUT, we have developed an automatic Heartbeat Template (HBT) extraction method based on Constellation Diagrams of the received signals. The extraction method will automatically spot and extract signals’ portions that carry good amount of heartbeat signals which are not corrupted by the RBM. The extracted HBT is then used as an adapted wavelet for Continuous Wavelet Transform (CWT) to reduce interferences from respiratory harmonics and RBM, as well as magnify the heartbeat signals. As the nature of RBM is unpredictable, the extracted HBT may not completely cancel the interferences from RBM. Therefore, to provide better HR detection’s accuracy, we have also developed a spectral-based HR selection method to gather frequency spectra of heartbeat signals from different MIMO channels. Based on this gathered spectral information, we can determine an accurate HR even if the heartbeat signals are significantly concealed by the RBM. To further improve the detection’s accuracy of RR and HR, two deep learning (DL) frameworks are also investigated. First, a Convolutional Neural Network (CNN) has been proposed to optimally select clean MIMO channels and eliminate MIMO channels with low SNR of heartbeat signals. After that, a Multi-layer Perceptron (MLP) neural network (NN) is utilized to reconstruct the heartbeat signals that will be used to assess and select the final HR with high confidence

    Noncontact monitoring of heartbeat and movements during sleep using a pair of millimeter-wave ultra-wideband radar systems

    Get PDF
    We experimentally evaluate the performance of a noncontact system that measures the heartbeat of a sleeping person. The proposed system comprises a pair of radar systems installed at two different positions. We use millimeter-wave ultra-wideband multiple-input multiple-output array radar systems and evaluate the performance attained in measuring the heart inter-beat interval and body movement. The importance of using two radar systems instead of one is demonstrated in this paper. We conduct three types of experiments; the first and second experiments are radar measurements of three participants lying on a bed with and without body movement, while the third experiment is the radar measurement of a participant actually sleeping overnight. The experiments demonstrate that the performance of the radar-based vital measurement strongly depends on the orientation of the person under test. They also show that the proposed system detects 70% of rolling-over movements made overnight

    Doppler Radar Techniques for Distinct Respiratory Pattern Recognition and Subject Identification.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Non-contact and real-time measurement of heart rate and heart rate variability using microwave reflectometry

    Get PDF
    In this paper, we present noncontact and noninvasive vital signal detection using a microwave reflectometer. Elimination of noise components due to random movement of human subjects has been the biggest issue for microwave measurement. Appropriate filtering, amplitude control of the reflectometer signal, and cross correlation among multiple reflectometers together with new algorithms have enabled motion artifact elimination, signal peak detection, and data processing for various parameters related to heart rate (HR) and heart rate variability (HRV). We focus here on the real time measurements of instantaneous HR and HRV for practical use. The evaluation by microwave reflectometry is completely noninvasive and feasible even through clothing, which is extremely effective for health maintenance in daily life as well as for preventing sudden death related to, for example, coronary heart disease and ventricular arrhythmia
    corecore