54 research outputs found

    Impersonation and personification in mid-twentieth century mathematics

    Get PDF

    Cardinal invariants of the continuum -A survey

    Get PDF
    Abstract These are expanded notes of a series of two lectures given at the meeting on axiomatic set theory at Kyōto University in November 2000. The lectures were intended to survey the state of the art of the theory of cardinal invariants of the continuum, and focused on the interplay between iterated forcing theory and cardinal invariants, as well as on important open problems. To round off the present written account of this survey, we also include sections on ZF C-inequalities between cardinal invariants, and on applications outside of set theory. However, due to the sheer size of the area, proofs had to be mostly left out. While being more comprehensive than the original talks, the personal flavor of the latter is preserved in the notes. Some of the material included was presented in talks at other conferences

    Mathematical Logic: Proof Theory, Constructive Mathematics (hybrid meeting)

    Get PDF
    The Workshop "Mathematical Logic: Proof Theory, Constructive Mathematics" focused on proofs both as formal derivations in deductive systems as well as on the extraction of explicit computational content from given proofs in core areas of ordinary mathematics using proof-theoretic methods. The workshop contributed to the following research strands: interactions between foundations and applications; proof mining; constructivity in classical logic; modal logic and provability logic; proof theory and theoretical computer science; structural proof theory

    Number Theoretic Transform and Its Applications in Lattice-based Cryptosystems: A Survey

    Full text link
    Number theoretic transform (NTT) is the most efficient method for multiplying two polynomials of high degree with integer coefficients, due to its series of advantages in terms of algorithm and implementation, and is consequently widely-used and particularly fundamental in the practical implementations of lattice-based cryptographic schemes. Especially, recent works have shown that NTT can be utilized in those schemes without NTT-friendly rings, and can outperform other multiplication algorithms. In this paper, we first review the basic concepts of polynomial multiplication, convolution and NTT. Subsequently, we systematically introduce basic radix-2 fast NTT algorithms in an algebraic way via Chinese Remainder Theorem. And then, we elaborate recent advances about the methods to weaken restrictions on parameter conditions of NTT. Furthermore, we systematically introduce how to choose appropriate strategy of NTT algorithms for the various given rings. Later, we introduce the applications of NTT in the lattice-based cryptographic schemes of NIST post-quantum cryptography standardization competition. Finally, we try to present some possible future research directions

    19th Brazilian Logic Conference: Book of Abstracts

    Get PDF
    This is the book of abstracts of the 19th Brazilian Logic Conferences. The Brazilian Logic Conferences (EBL) is one of the most traditional logic conferences in South America. Organized by the Brazilian Logic Society (SBL), its main goal is to promote the dissemination of research in logic in a broad sense. It has been occurring since 1979, congregating logicians of different fields ā€” mostly philosophy, mathematics and computer science ā€” and with different backgrounds ā€” from undergraduate students to senior researchers. The meeting is an important moment for the Brazilian and South American logical community to join together and discuss recent developments of the field. The areas of logic covered in the conference spread over foundations and philosophy of science, analytic philosophy, philosophy and history of logic, mathematics, computer science, informatics, linguistics and artificial intelligence. Previous editions of the EBL have been a great success, attracting researchers from all over Latin America and elsewhere. The 19th edition of EBL takes place from May 6-10, 2019, in the beautiful city of JoĆ£o Pessoa, at the northeast coast of Brazil. It is conjointly organized by Federal University of ParaĆ­ba (UFPB), whose main campus is located in JoĆ£o Pessoa, Federal University of Campina Grande (UFCG), whose main campus is located in the nearby city of Campina Grande (the second-largest city in ParaĆ­ba state) and SBL. It is sponsored by UFPB, UFCG, the Brazilian Council for Scientific and Technological Development (CNPq) and the State Ministry of Education, Science and Technology of ParaĆ­ba. It takes place at Hotel Luxxor Nord TambaĆŗ, privileged located right in front TambaĆŗ beach, one of JoĆ£o Pessoaā€™s most famous beaches

    A general insertion theorem for uniform locales

    Get PDF
    A general insertion theorem due to Preiss and VilimovskĆ½ is extended to the category of locales. More precisely, given a preuniform structure on a locale we provide necessary and sufficient conditions for a pair f ā‰„ g of localic real functions to admit a uniformly continuous real function in-between. As corollaries, separation and extension results for uniform locales are proved. The proof of the main theorem relies heavily on (pre-)diameters in locales as a substitute for classical pseudometrics. On the way, several general properties concerning these (pre-)diameters are also shown

    Formal concept matching and reinforcement learning in adaptive information retrieval

    Get PDF
    The superiority of the human brain in information retrieval (IR) tasks seems to come firstly from its ability to read and understand the concepts, ideas or meanings central to documents, in order to reason out the usefulness of documents to information needs, and secondly from its ability to learn from experience and be adaptive to the environment. In this work we attempt to incorporate these properties into the development of an IR model to improve document retrieval. We investigate the applicability of concept lattices, which are based on the theory of Formal Concept Analysis (FCA), to the representation of documents. This allows the use of more elegant representation units, as opposed to keywords, in order to better capture concepts/ideas expressed in natural language text. We also investigate the use of a reinforcement leaming strategy to learn and improve document representations, based on the information present in query statements and user relevance feedback. Features or concepts of each document/query, formulated using FCA, are weighted separately with respect to the documents they are in, and organised into separate concept lattices according to a subsumption relation. Furthen-nore, each concept lattice is encoded in a two-layer neural network structure known as a Bidirectional Associative Memory (BAM), for efficient manipulation of the concepts in the lattice representation. This avoids implementation drawbacks faced by other FCA-based approaches. Retrieval of a document for an information need is based on concept matching between concept lattice representations of a document and a query. The learning strategy works by making the similarity of relevant documents stronger and non-relevant documents weaker for each query, depending on the relevance judgements of the users on retrieved documents. Our approach is radically different to existing FCA-based approaches in the following respects: concept formulation; weight assignment to object-attribute pairs; the representation of each document in a separate concept lattice; and encoding concept lattices in BAM structures. Furthermore, in contrast to the traditional relevance feedback mechanism, our learning strategy makes use of relevance feedback information to enhance document representations, thus making the document representations dynamic and adaptive to the user interactions. The results obtained on the CISI, CACM and ASLIB Cranfield collections are presented and compared with published results. In particular, the performance of the system is shown to improve significantly as the system learns from experience.The School of Computing, University of Plymouth, UK

    Implementation and Evaluation of Algorithmic Skeletons: Parallelisation of Computer Algebra Algorithms

    Get PDF
    This thesis presents design and implementation approaches for the parallel algorithms of computer algebra. We use algorithmic skeletons and also further approaches, like data parallel arithmetic and actors. We have implemented skeletons for divide and conquer algorithms and some special parallel loops, that we call ā€˜repeated computation with a possibility of premature terminationā€™. We introduce in this thesis a rational data parallel arithmetic. We focus on parallel symbolic computation algorithms, for these algorithms our arithmetic provides a generic parallelisation approach. The implementation is carried out in Eden, a parallel functional programming language based on Haskell. This choice enables us to encode both the skeletons and the programs in the same language. Moreover, it allows us to refrain from using two different languagesā€”one for the implementation and one for the interfaceā€”for our implementation of computer algebra algorithms. Further, this thesis presents methods for evaluation and estimation of parallel execution times. We partition the parallel execution time into two components. One of them accounts for the quality of the parallelisation, we call it the ā€˜parallel penaltyā€™. The other is the sequential execution time. For the estimation, we predict both components separately, using statistical methods. This enables very confident estimations, although using drastically less measurement points than other methods. We have applied both our evaluation and estimation approaches to the parallel programs presented in this thesis. We haven also used existing estimation methods. We developed divide and conquer skeletons for the implementation of fast parallel multiplication. We have implemented the Karatsuba algorithm, Strassenā€™s matrix multiplication algorithm and the fast Fourier transform. The latter was used to implement polynomial convolution that leads to a further fast multiplication algorithm. Specially for our implementation of Strassen algorithm we have designed and implemented a divide and conquer skeleton basing on actors. We have implemented the parallel fast Fourier transform, and not only did we use new divide and conquer skeletons, but also developed a map-and-transpose skeleton. It enables good parallelisation of the Fourier transform. The parallelisation of Karatsuba multiplication shows a very good performance. We have analysed the parallel penalty of our programs and compared it to the serial fractionā€”an approach, known from literature. We also performed execution time estimations of our divide and conquer programs. This thesis presents a parallel map+reduce skeleton scheme. It allows us to combine the usual parallel map skeletons, like parMap, farm, workpool, with a premature termination property. We use this to implement the so-called ā€˜parallel repeated computationā€™, a special form of a speculative parallel loop. We have implemented two probabilistic primality tests: the Rabinā€“Miller test and the Jacobi sum test. We parallelised both with our approach. We analysed the task distribution and stated the fitting configurations of the Jacobi sum test. We have shown formally that the Jacobi sum test can be implemented in parallel. Subsequently, we parallelised it, analysed the load balancing issues, and produced an optimisation. The latter enabled a good implementation, as verified using the parallel penalty. We have also estimated the performance of the tests for further input sizes and numbers of processing elements. Parallelisation of the Jacobi sum test and our generic parallelisation scheme for the repeated computation is our original contribution. The data parallel arithmetic was defined not only for integers, which is already known, but also for rationals. We handled the common factors of the numerator or denominator of the fraction with the modulus in a novel manner. This is required to obtain a true multiple-residue arithmetic, a novel result of our research. Using these mathematical advances, we have parallelised the determinant computation using the GauƟ elimination. As always, we have performed task distribution analysis and estimation of the parallel execution time of our implementation. A similar computation in Maple emphasised the potential of our approach. Data parallel arithmetic enables parallelisation of entire classes of computer algebra algorithms. Summarising, this thesis presents and thoroughly evaluates new and existing design decisions for high-level parallelisations of computer algebra algorithms
    • ā€¦
    corecore