219 research outputs found

    Design tradeoffs and challenges in practical coherent optical transceiver implementations

    Get PDF
    This tutorial discusses the design and ASIC implementation of coherent optical transceivers. Algorithmic and architectural options and tradeoffs between performance and complexity/power dissipation are presented. Particular emphasis is placed on flexible (or reconfigurable) transceivers because of their importance as building blocks of software-defined optical networks. The paper elaborates on some advanced digital signal processing (DSP) techniques such as iterative decoding, which are likely to be applied in future coherent transceivers based on higher order modulations. Complexity and performance of critical DSP blocks such as the forward error correction decoder and the frequency-domain bulk chromatic dispersion equalizer are analyzed in detail. Other important ASIC implementation aspects including physical design, signal and power integrity, and design for testability, are also discussed.Fil: Morero, Damián Alfonso. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; ArgentinaFil: Castrillon, Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Aguirre, Alejandro. ClariPhy Argentina S.A.; ArgentinaFil: Hueda, Mario Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Agazzi, Oscar Ernesto. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. ClariPhy Argentina S.A.; Argentin

    Nouvelles stratégies de concaténation de codes séries pour la réduction du seuil d’erreur dans le contrôle de parité à faible densité et dans les turbo codes produits

    Get PDF
    This paper presents a novel multiple serial code concatenation (SCC) strategy to combat the error-floor problem in iterated sparse graph-based error correcting codes such as turbo product-codes (TPC) and low-density parity-check (LDPC) codes. Although SCC has been widely used in the past to reduce the error-floor in iterative decoders, the main stumbling block for its practical application in high-speed communication systems has been the need for long and complex outer codes. Alternative, short outer block codes with interleaving have been shown to provide a good tradeoff between complexity and performance. Nevertheless, their application to next-generation high-speed communication systems is still a major challenge as a result of the careful design of long complex interleavers needed to meet the requirements of these applications. The SCC scheme proposed in this work is based on the use of short outer block codes. Departing from techniques used in previous proposals, the long outer code and interleaver are replaced by a simple block code combined with a novel encoding/decoding strategy. This allows the proposed SCC to provide a better tradeoff between performance and complexity than previous techniques. Several application examples showing the benefits of the proposed SCC are described. Particularly, a new coding scheme suitable for high-speed optical communication is introduced.Fil: Morero, Damián Alfonso. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Fisicas y Naturales; ArgentinaFil: Hueda, Mario Rafael. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Fisicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    Forward Error Correcting Codes for 100 Gbit/s Optical Communication Systems

    Get PDF

    Low-Power 400-Gbps Soft-Decision LDPC FEC for Optical Transport Networks

    Get PDF
    We present forward error correction systems based on soft-decision low-density parity check (LDPC) codes for applications in 100–400-Gbps optical transport networks. These systems are based on the low-complexity “adaptive degeneration” decoding algorithm, which we introduce in this paper, along with randomly-structured LDPC codes with block lengths from 30 000 to 60 000 bits and overhead (OH) from 6.7% to 33%. We also construct a 3600-bit prototype LDPC code with 20% overhead, and experimentally show that it has no error floor above a bit error rate (BER) of 10−15 using a field-programmable gate array (FPGA)-based hardware emulator. The projected net coding gain at a BER of 10−15 ranges from 9.6 dB at 6.7% OH to 11.2 dB at 33% OH. We also present application-specific integrated circuit synthesis results for these decoders in 28 nm fully depleted silicon on insulator technology, which show that they are capable of 400-Gbps operation with energy consumption of under 3 pJ per information bit

    Replacing the Soft FEC Limit Paradigm in the Design of Optical Communication Systems

    Get PDF
    The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit-error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bit-wise decoding. It is shown that for low code rates and high order modulation formats, the use of the soft FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Impact of 4D channel distribution on the achievable rates in coherent optical communication experiments

    Get PDF
    We experimentally investigate mutual information and generalized mutual information for coherent optical transmission systems. The impact of the assumed channel distribution on the achievable rate is investigated for distributions in up to four dimensions. Single channel and wavelength division multiplexing (WDM) transmission over transmission links with and without inline dispersion compensation are studied. We show that for conventional WDM systems without inline dispersion compensation, a circularly symmetric complex Gaussian distribution is a good approximation of the channel. For other channels, such as with inline dispersion compensation, this is no longer true and gains in the achievable information rate are obtained by considering more sophisticated four-dimensional (4D) distributions. We also show that for nonlinear channels, gains in the achievable information rate can also be achieved by estimating the mean values of the received constellation in four dimensions. The highest gain for such channels is seen for a 4D correlated Gaussian distribution
    corecore