132 research outputs found

    A theory of resolution

    No full text
    We review the fundamental resolution-based methods for first-order theorem proving and present them in a uniform framework. We show that these calculi can be viewed as specializations of non-clausal resolution with simplification. Simplification techniques are justified with the help of a rather general notion of redundancy for inferences. As simplification and other techniques for the elimination of redundancy are indispensable for an acceptable behaviour of any practical theorem prover this work is the first uniform treatment of resolution-like techniques in which the avoidance of redundant computations attains the attention it deserves. In many cases our presentation of a resolution method will indicate new ways of how to improve the method over what was known previously. We also give answers to several open problems in the area

    Rewrite-based equational theorem proving with selection and simplification

    No full text
    We present various refutationally complete calculi for first-order clauses with equality that allow for arbitrary selection of negative atoms in clauses. Refutation completeness is established via the use of well-founded orderings on clauses for defining a Herbrand model for a consistent set of clauses. We also formulate an abstract notion of redundancy and show that the deletion of redundant clauses during the theorem proving process preserves refutation completeness. It is often possible to compute the closure of nontrivial sets of clauses under application of non-redundant inferences. The refutation of goals for such complete sets of clauses is simpler than for arbitrary sets of clauses, in particular one can restrict attention to proofs that have support from the goals without compromising refutation completeness. Additional syntactic properties allow to restrict the search space even further, as we demonstrate for so-called quasi-Horn clauses. The results in this paper contain as special cases or generalize many known results about Knuth-Bendix-like completion procedures (for equations, Horn clauses, and Horn clauses over built-in Booleans), completion of first-order clauses by clausal rewriting, and inductive theorem proving for Horn clauses

    Superposition with Lambdas

    Get PDF
    We designed a superposition calculus for a clausal fragment of extensional polymorphic higher-order logic that includes anonymous functions but excludes Booleans. The inference rules work on βη-equivalence classes of λ-terms and rely on higher-order unification to achieve refutational completeness. We implemented the calculus in the Zipperposition prover and evaluated it on TPTP and Isabelle benchmarks. The results suggest that superposition is a suitable basis for higher-order reasoning

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    Superposition for Lambda-Free Higher-Order Logic

    Get PDF
    We introduce refutationally complete superposition calculi for intentional and extensional clausal λ\lambda-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the λ\lambda-free higher-order lexicographic path and Knuth-Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on Isabelle/HOL and TPTP benchmarks. They appear promising as a stepping stone towards complete, highly efficient automatic theorem provers for full higher-order logic

    Superposition with First-class {B}ooleans and Inprocessing Clausification

    Get PDF
    International audienceWe present a complete superposition calculus for first-order logic with an interpreted Boolean type. Our motivation is to lay the foundation for refutationally complete calculi in more expressive logics with Booleans, such as higher-order logic, and to make superposition work efficiently on problems that would be obfuscated when using clausification as preprocessing. Working directly on formulas, our calculus avoids the costly axiomatic encoding of the theory of Booleans into first-order logic and offers various ways to interleave clausification with other derivation steps. We evaluate our calculus using the Zipperposition theorem prover, and observe that, with no tuning of parameters, our approach is on a par with the state-of-the-art approach

    Superposition with Lambdas

    Get PDF
    We designed a superposition calculus for a clausal fragment of extensional polymorphic higher-order logic that includes anonymous functions but excludes Booleans. The inference rules work on βη\beta\eta-equivalence classes of λ\lambda-terms and rely on higher-order unification to achieve refutational completeness. We implemented the calculus in the Zipperposition prover and evaluated it on TPTP and Isabelle benchmarks. The results suggest that superposition is a suitable basis for higher-order reasoning

    Superposition with simplification as a decision procedure for the monadic class with equality

    No full text
    We show that strict superposition, a restricted form of paramodulation, can be combined with specifically designed simplification rules such that it becomes a decision procedure for the monadic class with equality. The completeness of the method follows from a general notion of redundancy for clauses and superposition inferences
    corecore