803 research outputs found

    On the Construction and Decoding of Concatenated Polar Codes

    Full text link
    A scheme for concatenating the recently invented polar codes with interleaved block codes is considered. By concatenating binary polar codes with interleaved Reed-Solomon codes, we prove that the proposed concatenation scheme captures the capacity-achieving property of polar codes, while having a significantly better error-decay rate. We show that for any ϵ>0\epsilon > 0, and total frame length NN, the parameters of the scheme can be set such that the frame error probability is less than 2−N1−ϵ2^{-N^{1-\epsilon}}, while the scheme is still capacity achieving. This improves upon 2^{-N^{0.5-\eps}}, the frame error probability of Arikan's polar codes. We also propose decoding algorithms for concatenated polar codes, which significantly improve the error-rate performance at finite block lengths while preserving the low decoding complexity

    Source and Channel Polarization over Finite Fields and Reed-Solomon Matrices

    Full text link
    Polarization phenomenon over any finite field Fq\mathbb{F}_{q} with size qq being a power of a prime is considered. This problem is a generalization of the original proposal of channel polarization by Arikan for the binary field, as well as its extension to a prime field by Sasoglu, Telatar, and Arikan. In this paper, a necessary and sufficient condition of a matrix over a finite field Fq\mathbb{F}_q is shown under which any source and channel are polarized. Furthermore, the result of the speed of polarization for the binary alphabet obtained by Arikan and Telatar is generalized to arbitrary finite field. It is also shown that the asymptotic error probability of polar codes is improved by using the Reed-Solomon matrix, which can be regarded as a natural generalization of the 2×22\times 2 binary matrix used in the original proposal by Arikan.Comment: 17 pages, 3 figures, accepted for publication in the IEEE Transactions on Information Theor

    Applications of Algebraic Geometric Codes to Polar Coding

    Get PDF
    In recent groundbreaking work, Arikan developed polar codes as an explicit construction of symmetric capacity achieving codes for binary discrete memoryless channels with low encoding and decoding complexities. In this construction, a specific kernel matrix G is considered and is used to encode a block of channels. As the number of channels grows, each channel becomes either a noiseless channel or a pure-noise channel, and the rate of this polarization is related to the kernel matrix used. Since Arikan\u27s original construction, polar codes have been generalized to q-ary discrete memoryless channels, where q is a power of a prime, and other matrices have been considered as kernels. In our work, we expand on the ideas of Mori and Tanaka and Korada, Sasoglu, and Urbanke by employing algebraic geometric codes to produce kernels of polar codes, specifically codes from maximal and optimal function fields

    Algebraic Properties of Polar Codes From a New Polynomial Formalism

    Get PDF
    Polar codes form a very powerful family of codes with a low complexity decoding algorithm that attain many information theoretic limits in error correction and source coding. These codes are closely related to Reed-Muller codes because both can be described with the same algebraic formalism, namely they are generated by evaluations of monomials. However, finding the right set of generating monomials for a polar code which optimises the decoding performances is a hard task and channel dependent. The purpose of this paper is to reveal some universal properties of these monomials. We will namely prove that there is a way to define a nontrivial (partial) order on monomials so that the monomials generating a polar code devised fo a binary-input symmetric channel always form a decreasing set. This property turns out to have rather deep consequences on the structure of the polar code. Indeed, the permutation group of a decreasing monomial code contains a large group called lower triangular affine group. Furthermore, the codewords of minimum weight correspond exactly to the orbits of the minimum weight codewords that are obtained from (evaluations) of monomials of the generating set. In particular, it gives an efficient way of counting the number of minimum weight codewords of a decreasing monomial code and henceforth of a polar code.Comment: 14 pages * A reference to the work of Bernhard Geiger has been added (arXiv:1506.05231) * Lemma 3 has been changed a little bit in order to prove that Proposition 7.1 in arXiv:1506.05231 holds for any binary input symmetric channe

    A characterization of MDS codes that have an error correcting pair

    Full text link
    Error-correcting pairs were introduced in 1988 by R. Pellikaan, and were found independently by R. K\"otter (1992), as a general algebraic method of decoding linear codes. These pairs exist for several classes of codes. However little or no study has been made for characterizing those codes. This article is an attempt to fill the vacuum left by the literature concerning this subject. Since every linear code is contained in an MDS code of the same minimum distance over some finite field extension we have focused our study on the class of MDS codes. Our main result states that an MDS code of minimum distance 2t+12t+1 has a tt-ECP if and only if it is a generalized Reed-Solomon code. A second proof is given using recent results Mirandola and Z\'emor (2015) on the Schur product of codes
    • …
    corecore