11 research outputs found

    On hypohamiltonian snarks and a theorem of Fiorini

    Get PDF
    In 2003, Cavicchioli et al. corrected an omission in the statement and proof of Fiorini's theorem from 1983 on hypohamiltonian snarks. However, their version of this theorem contains an unattainable condition for certain cases. We discuss and extend the results of Fiorini and Cavicchioli et al. and present a version of this theorem which is more general in several ways. Using Fiorini's erroneous result, Steffen had shown that hypohamiltonian snarks exist for some orders n >= 10 and each even n >= 92. We rectify Steffen's proof by providing a correct demonstration of a technical lemma on flower snarks, which might be of separate interest. We then strengthen Steffen's theorem to the strongest possible form by determining all orders for which hypohamiltonian snarks exist. This also strengthens a result of Macajova and Skoviera. Finally, we verify a conjecture of Steffen on hypohamiltonian snarks up to 36 vertices

    On almost hypohamiltonian graphs

    Get PDF
    A graph GG is almost hypohamiltonian (a.h.) if GG is non-hamiltonian, there exists a vertex ww in GG such that G−wG - w is non-hamiltonian, and G−vG - v is hamiltonian for every vertex v≠wv \ne w in GG. The second author asked in [J. Graph Theory 79 (2015) 63--81] for all orders for which a.h. graphs exist. Here we solve this problem. To this end, we present a specialised algorithm which generates complete sets of a.h. graphs for various orders. Furthermore, we show that the smallest cubic a.h. graphs have order 26. We provide a lower bound for the order of the smallest planar a.h. graph and improve the upper bound for the order of the smallest planar a.h. graph containing a cubic vertex. We also determine the smallest planar a.h. graphs of girth 5, both in the general and cubic case. Finally, we extend a result of Steffen on snarks and improve two bounds on longest paths and longest cycles in polyhedral graphs due to Jooyandeh, McKay, {\"O}sterg{\aa}rd, Pettersson, and the second author.Comment: 18 pages. arXiv admin note: text overlap with arXiv:1602.0717

    On almost hypohamiltonian graphs

    Get PDF
    A graph G is almost hypohamiltonian (a.h.) if G is non-hamiltonian, there exists a vertex w in G such that G - w is non-hamiltonian, and G - v is hamiltonian for every vertex v \ne w in G. The second author asked in [J. Graph Theory 79 (2015) 63–81] for all orders for which a.h. graphs exist. Here we solve this problem. To this end, we present a specialised algorithm which generates complete sets of a.h. graphs for various orders. Furthermore, we show that the smallest cubic a.h. graphs have order 26. We provide a lower bound for the order of the smallest planar a.h. graph and improve the upper bound for the order of the smallest planar a.h. graph containing a cubic vertex. We also determine the smallest planar a.h. graphs of girth 5, both in the general and cubic case. Finally, we extend a result of Steffen on snarks and improve two bounds on longest paths and longest cycles in polyhedral graphs due to Jooyandeh, McKay, Östergård, Pettersson, and the second author

    Snarks with total chromatic number 5

    Get PDF
    A k-total-coloring of G is an assignment of k colors to the edges and vertices of G, so that adjacent and incident elements have different colors. The total chromatic number of G, denoted by chi(T)(G), is the least k for which G has a k-total-coloring. It was proved by Rosenfeld that the total chromatic number of a cubic graph is either 4 or 5. Cubic graphs with chi(T) = 4 are said to be Type 1, and cubic graphs with chi(T) = 5 are said to be Type 2. Snarks are cyclically 4-edge-connected cubic graphs that do not allow a 3-edge-coloring. In 2003, Cavicchioli et al. asked for a Type 2 snark with girth at least 5. As neither Type 2 cubic graphs with girth at least 5 nor Type 2 snarks are known, this is taking two steps at once, and the two requirements of being a snark and having girth at least 5 should better be treated independently. In this paper we will show that the property of being a snark can be combined with being Type 2. We will give a construction that gives Type 2 snarks for each even vertex number n >= 40. We will also give the result of a computer search showing that among all Type 2 cubic graphs on up to 32 vertices, all but three contain an induced chordless cycle of length 4. These three exceptions contain triangles. The question of the existence of a Type 2 cubic graph with girth at least 5 remains open

    Measurements of edge uncolourability in cubic graphs

    Get PDF
    Philosophiae Doctor - PhDThe history of the pursuit of uncolourable cubic graphs dates back more than a century. This pursuit has evolved from the slow discovery of individual uncolourable cubic graphs such as the famous Petersen graph and the Blanusa snarks, to discovering in nite classes of uncolourable cubic graphs such as the Louphekine and Goldberg snarks, to investigating parameters which measure the uncolourability of cubic graphs. These parameters include resistance, oddness and weak oddness, ow resistance, among others. In this thesis, we consider current ideas and problems regarding the uncolourability of cubic graphs, centering around these parameters. We introduce new ideas regarding the structural complexity of these graphs in question. In particular, we consider their 3-critical subgraphs, speci cally in relation to resistance. We further introduce new parameters which measure the uncolourability of cubic graphs, speci cally relating to their 3-critical subgraphs and various types of cubic graph reductions. This is also done with a view to identifying further problems of interest. This thesis also presents solutions and partial solutions to long-standing open conjectures relating in particular to oddness, weak oddness and resistance

    Hypohamiltonian and almost hypohamiltonian graphs

    Get PDF
    This Dissertation is structured as follows. In Chapter 1, we give a short historical overview and define fundamental concepts. Chapter 2 contains a clear narrative of the progress made towards finding the smallest planar hypohamiltonian graph, with all of the necessary theoretical tools and techniques--especially Grinberg's Criterion. Consequences of this progress are distributed over all sections and form the leitmotif of this Dissertation. Chapter 2 also treats girth restrictions and hypohamiltonian graphs in the context of crossing numbers. Chapter 3 is a thorough discussion of the newly introduced almost hypohamiltonian graphs and their connection to hypohamiltonian graphs. Once more, the planar case plays an exceptional role. At the end of the chapter, we study almost hypotraceable graphs and Gallai's problem on longest paths. The latter leads to Chapter 4, wherein the connection between hypohamiltonicity and various problems related to longest paths and longest cycles are presented. Chapter 5 introduces and studies non-hamiltonian graphs in which every vertex-deleted subgraph is traceable, a class encompassing hypohamiltonian and hypotraceable graphs. We end with an outlook in Chapter 6, where we present a selection of open problems enriched with comments and partial results

    Subject Index Volumes 1–200

    Get PDF

    Non-bicritical Critical Snarks

    No full text
    Snarks are cubic graphs with chromatic index Ø 0 = 4. A snark G is called critical if Ø 0 (G \Gamma fv; wg) = 3 for any two adjacent vertices v and w, and it is called bicritical if Ø 0 (G \Gamma fv; wg) = 3 for any two vertices v and w. We construct infinite families of critical snarks which are not bicritical. This solves a problem stated by Nedela and Skoviera in [7]

    Cyclically 5-edge connected non-bicritical critical snarks

    No full text
    Snarks are bridgeless cubic graphs with chromatic index χ' = 4. A snark G is called critical if χ'(G-{v,w}) = 3, for any two adjacent vertices v and w. For any k ≥ 2 we construct cyclically 5-edge connected critical snarks G having an independent set I of at least k vertices such that χ'(G-I) = 4. For k = 2 this solves a problem of Nedela and Skoviera [6]
    corecore