266 research outputs found

    Tensor Regression

    Full text link
    Regression analysis is a key area of interest in the field of data analysis and machine learning which is devoted to exploring the dependencies between variables, often using vectors. The emergence of high dimensional data in technologies such as neuroimaging, computer vision, climatology and social networks, has brought challenges to traditional data representation methods. Tensors, as high dimensional extensions of vectors, are considered as natural representations of high dimensional data. In this book, the authors provide a systematic study and analysis of tensor-based regression models and their applications in recent years. It groups and illustrates the existing tensor-based regression methods and covers the basics, core ideas, and theoretical characteristics of most tensor-based regression methods. In addition, readers can learn how to use existing tensor-based regression methods to solve specific regression tasks with multiway data, what datasets can be selected, and what software packages are available to start related work as soon as possible. Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis. It is essential reading for all students, researchers and practitioners of working on high dimensional data.Comment: 187 pages, 32 figures, 10 table

    Bayesian statistics and modelling

    Get PDF
    Bayesian statistics is an approach to data analysis based on Bayes’ theorem, where available knowledge about parameters in a statistical model is updated with the information in observed data. The background knowledge is expressed as a prior distribution and combined with observational data in the form of a likelihood function to determine the posterior distribution. The posterior can also be used for making predictions about future events. This Primer describes the stages involved in Bayesian analysis, from specifying the prior and data models to deriving inference, model checking and refinement. We discuss the importance of prior and posterior predictive checking, selecting a proper technique for sampling from a posterior distribution, variational inference and variable selection. Examples of successful applications of Bayesian analysis across various research fields are provided, including in social sciences, ecology, genetics, medicine and more. We propose strategies for reproducibility and reporting standards, outlining an updated WAMBS (when to Worry and how to Avoid the Misuse of Bayesian Statistics) checklist. Finally, we outline the impact of Bayesian analysis on artificial intelligence, a major goal in the next decade

    AI alignment and generalization in deep learning

    Full text link
    This thesis covers a number of works in deep learning aimed at understanding and improving generalization abilities of deep neural networks (DNNs). DNNs achieve unrivaled performance in a growing range of tasks and domains, yet their behavior during learning and deployment remains poorly understood. They can also be surprisingly brittle: in-distribution generalization can be a poor predictor of behavior or performance under distributional shifts, which typically cannot be avoided in practice. While these limitations are not unique to DNNs -- and indeed are likely to be challenges facing any AI systems of sufficient complexity -- the prevalence and power of DNNs makes them particularly worthy of study. I frame these challenges within the broader context of "AI Alignment": a nascent field focused on ensuring that AI systems behave in accordance with their user's intentions. While making AI systems more intelligent or capable can help make them more aligned, it is neither necessary nor sufficient for alignment. However, being able to align state-of-the-art AI systems (e.g. DNNs) is of great social importance in order to avoid undesirable and unsafe behavior from advanced AI systems. Without progress in AI Alignment, advanced AI systems might pursue objectives at odds with human survival, posing an existential risk (``x-risk'') to humanity. A core tenet of this thesis is that the achieving high performance on machine learning benchmarks if often a good indicator of AI systems' capabilities, but not their alignment. This is because AI systems often achieve high performance in unexpected ways that reveal the limitations of our performance metrics, and more generally, our techniques for specifying our intentions. Learning about human intentions using DNNs shows some promise, but DNNs are still prone to learning to solve tasks using concepts of "features" very different from those which are salient to humans. Indeed, this is a major source of their poor generalization on out-of-distribution data. By better understanding the successes and failures of DNN generalization and current methods of specifying our intentions, we aim to make progress towards deep-learning based AI systems that are able to understand users' intentions and act accordingly.Cette thèse discute quelques travaux en apprentissage profond visant à comprendre et à améliorer les capacités de généralisation des réseaux de neurones profonds (DNN). Les DNNs atteignent des performances inégalées dans un éventail croissant de tâches et de domaines, mais leur comportement pendant l'apprentissage et le déploiement reste mal compris. Ils peuvent également être étonnamment fragiles: la généralisation dans la distribution peut être un mauvais prédicteur du comportement ou de la performance lors de changements de distribution, ce qui ne peut généralement pas être évité dans la pratique. Bien que ces limitations ne soient pas propres aux DNN - et sont en effet susceptibles de constituer des défis pour tout système d'IA suffisamment complexe - la prévalence et la puissance des DNN les rendent particulièrement dignes d'étude. J'encadre ces défis dans le contexte plus large de «l'alignement de l'IA»: un domaine naissant axé sur la garantie que les systèmes d'IA se comportent conformément aux intentions de leurs utilisateurs. Bien que rendre les systèmes d'IA plus intelligents ou capables puisse aider à les rendre plus alignés, cela n'est ni nécessaire ni suffisant pour l'alignement. Cependant, être capable d'aligner les systèmes d'IA de pointe (par exemple les DNN) est d'une grande importance sociale afin d'éviter les comportements indésirables et dangereux des systèmes d'IA avancés. Sans progrès dans l'alignement de l'IA, les systèmes d'IA avancés pourraient poursuivre des objectifs contraires à la survie humaine, posant un risque existentiel («x-risque») pour l'humanité. L'un des principes fondamentaux de cette thèse est que l'obtention de hautes performances sur les repères d'apprentissage automatique est souvent un bon indicateur des capacités des systèmes d'IA, mais pas de leur alignement. En effet, les systèmes d'IA atteignent souvent des performances élevées de manière inattendue, ce qui révèle les limites de nos mesures de performance et, plus généralement, de nos techniques pour spécifier nos intentions. L'apprentissage des intentions humaines à l'aide des DNN est quelque peu prometteur, mais les DNN sont toujours enclins à apprendre à résoudre des tâches en utilisant des concepts de «caractéristiques» très différents de ceux qui sont saillants pour les humains. En effet, c'est une source majeure de leur mauvaise généralisation sur les données hors distribution. En comprenant mieux les succès et les échecs de la généralisation DNN et les méthodes actuelles de spécification de nos intentions, nous visons à progresser vers des systèmes d'IA basés sur l'apprentissage en profondeur qui sont capables de comprendre les intentions des utilisateurs et d'agir en conséquence

    Détection de changement par fusion d'images de télédétection de résolutions et modalités différentes

    Get PDF
    La détection de changements dans une scène est l’un des problèmes les plus complexes en télédétection. Il s’agit de détecter des modifications survenues dans une zone géographique donnée par comparaison d’images de cette zone acquises à différents instants. La comparaison est facilitée lorsque les images sont issues du même type de capteur c’est-à-dire correspondent à la même modalité (le plus souvent optique multi-bandes) et possèdent des résolutions spatiales et spectrales identiques. Les techniques de détection de changements non supervisées sont, pour la plupart, conçues spécifiquement pour ce scénario. Il est, dans ce cas, possible de comparer directement les images en calculant la différence de pixels homologues, c’est-à-dire correspondant au même emplacement au sol. Cependant, dans certains cas spécifiques tels que les situations d’urgence, les missions ponctuelles, la défense et la sécurité, il peut s’avérer nécessaire d’exploiter des images de modalités et de résolutions différentes. Cette hétérogénéité dans les images traitées introduit des problèmes supplémentaires pour la mise en œuvre de la détection de changements. Ces problèmes ne sont pas traités par la plupart des méthodes de l’état de l’art. Lorsque la modalité est identique mais les résolutions différentes, il est possible de se ramener au scénario favorable en appliquant des prétraitements tels que des opérations de rééchantillonnage destinées à atteindre les mêmes résolutions spatiales et spectrales. Néanmoins, ces prétraitements peuvent conduire à une perte d’informations pertinentes pour la détection de changements. En particulier, ils sont appliqués indépendamment sur les deux images et donc ne tiennent pas compte des relations fortes existant entre les deux images. L’objectif de cette thèse est de développer des méthodes de détection de changements qui exploitent au mieux l’information contenue dans une paire d’images observées, sans condition sur leur modalité et leurs résolutions spatiale et spectrale. Les restrictions classiquement imposées dans l’état de l’art sont levées grâce à une approche utilisant la fusion des deux images observées. La première stratégie proposée s’applique au cas d’images de modalités identiques mais de résolutions différentes. Elle se décompose en trois étapes. La première étape consiste à fusionner les deux images observées ce qui conduit à une image de la scène à haute résolution portant l’information des changements éventuels. La deuxième étape réalise la prédiction de deux images non observées possédant des résolutions identiques à celles des images observées par dégradation spatiale et spectrale de l’image fusionnée. Enfin, la troisième étape consiste en une détection de changements classique entre images observées et prédites de mêmes résolutions. Une deuxième stratégie modélise les images observées comme des versions dégradées de deux images non observées caractérisées par des résolutions spectrales et spatiales identiques et élevées. Elle met en œuvre une étape de fusion robuste qui exploite un a priori de parcimonie des changements observés. Enfin, le principe de la fusion est étendu à des images de modalités différentes. Dans ce cas où les pixels ne sont pas directement comparables, car correspondant à des grandeurs physiques différentes, la comparaison est réalisée dans un domaine transformé. Les deux images sont représentées par des combinaisons linéaires parcimonieuses des éléments de deux dictionnaires couplés, appris à partir des données. La détection de changements est réalisée à partir de l’estimation d’un code couplé sous condition de parcimonie spatiale de la différence des codes estimés pour chaque image. L’expérimentation de ces différentes méthodes, conduite sur des changements simulés de manière réaliste ou sur des changements réels, démontre les avantages des méthodes développées et plus généralement de l’apport de la fusion pour la détection de changement
    • …
    corecore