279 research outputs found

    Interactive Error Correcting Codes: New Constructions and Impossibility Bounds

    Get PDF

    Resilience to time-correlated noise in quantum computation

    Full text link
    Fault-tolerant quantum computation techniques rely on weakly correlated noise. Here I show that it is enough to assume weak spatial correlations: time correlations can take any form. In particular, single-shot error correction techniques exhibit a noise threshold for quantum memories under spatially local stochastic noise.Comment: 16 pages, v3: as accepted in journa

    06201 Abstracts Collection -- Combinatorial and Algorithmic Foundations of Pattern and Association Discovery

    Get PDF
    From 15.05.06 to 20.05.06, the Dagstuhl Seminar 06201 ``Combinatorial and Algorithmic Foundations of Pattern and Association Discovery\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    GROTESQUE: Noisy Group Testing (Quick and Efficient)

    Full text link
    Group-testing refers to the problem of identifying (with high probability) a (small) subset of DD defectives from a (large) set of NN items via a "small" number of "pooled" tests. For ease of presentation in this work we focus on the regime when D = \cO{N^{1-\gap}} for some \gap > 0. The tests may be noiseless or noisy, and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of literature demonstrates that Θ(Dlog(N))\Theta(D\log(N)) tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexity that is sub-linear in NN have started being investigated (recent work by \cite{GurI:04,IndN:10, NgoP:11} gave some of the first such algorithms). In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (\cO{D\log(N)} in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (\cO{\log(D)}). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires \cO{D\log(D)\log(N)} tests and has a decoding complexity of {O(D(logN+log2D)){\cal O}(D(\log N+\log^{2}D))}. Finally, we present an adaptive algorithm that only requires 2 stages, and for which both the number of tests and the decoding complexity scale as {O(D(logN+log2D)){\cal O}(D(\log N+\log^{2}D))}. For all three settings the probability of error of our algorithms scales as \cO{1/(poly(D)}.Comment: 26 pages, 5 figure

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200
    corecore