25,555 research outputs found

    Non parametric estimation of the structural expectation of a stochastic increasing function

    Get PDF
    This article introduces a non parametric warping model for functional data. When the outcome of an experiment is a sample of curves, data can be seen as realizations of a stochastic process, which takes into account the small variations between the different observed curves. The aim of this work is to define a mean pattern which represents the main behaviour of the set of all the realizations. So we define the structural expectation of the underlying stochastic function. Then we provide empirical estimators of this structural expectation and of each individual warping function. Consistency and asymptotic normality for such estimators are proved

    Non parametric estimation of the structural expectation of a stochastic increasing function

    Get PDF
    International audienceThis article introduces a non parametric warping model for functional data. When the outcome of an experiment is a sample of curves, data can be seen as realizations of a stochastic process, which takes into account the variations between the different observed curves. The aim of this work is to define a mean pattern which represents the main behaviour of the set of all the realizations. So, we define the structural expectation of the underlying stochastic function. Then, we provide empirical estimators of this structural expectation and of each individual warping function. Consistency and asymptotic normality for such estimators are proved

    Mortality modelling and forecasting: a review of methods

    Get PDF

    Endogeneity and Instrumental Variables in Dynamic Models

    Get PDF
    The objective of the paper is to draw the theory of endogeneity in dynamic models in discrete and continuous time, in particular for diffusions and counting processes. We first provide an extension of the separable set-up to a separable dynamic framework given in term of semi-martingale decomposition. Then we define our function of interest as a stopping time for an additional noise process, whose role is played by a Brownian motion for diffusions, and a Poisson process for counting processes.

    Non Parametric Models with Instrumental Variables

    Get PDF
    This paper gives a survey of econometric models characterized by a relation between observable and unobservable random elements where these unobservable terms are assumed to be independent of another set of observable variables called instrumental variables. This kind of specification is usefull to address the question of endogeneity or of selection bias for example. These models are treated non parametrically and in all the example we consider the functional parameter of interest is defined as the solution of a linear or non linear integral equation. The estimation procedure then requires to solve a (generally ill-posed) inverse problem. We illustrate the main questions (construction of the equation, identification, numerical solution, asymptotic properties, selection of the regularization parameter) by the different models we present.

    A Primer on Causality in Data Science

    Get PDF
    Many questions in Data Science are fundamentally causal in that our objective is to learn the effect of some exposure, randomized or not, on an outcome interest. Even studies that are seemingly non-causal, such as those with the goal of prediction or prevalence estimation, have causal elements, including differential censoring or measurement. As a result, we, as Data Scientists, need to consider the underlying causal mechanisms that gave rise to the data, rather than simply the pattern or association observed in those data. In this work, we review the 'Causal Roadmap' of Petersen and van der Laan (2014) to provide an introduction to some key concepts in causal inference. Similar to other causal frameworks, the steps of the Roadmap include clearly stating the scientific question, defining of the causal model, translating the scientific question into a causal parameter, assessing the assumptions needed to express the causal parameter as a statistical estimand, implementation of statistical estimators including parametric and semi-parametric methods, and interpretation of our findings. We believe that using such a framework in Data Science will help to ensure that our statistical analyses are guided by the scientific question driving our research, while avoiding over-interpreting our results. We focus on the effect of an exposure occurring at a single time point and highlight the use of targeted maximum likelihood estimation (TMLE) with Super Learner.Comment: 26 pages (with references); 4 figure

    Importance Sampling and its Optimality for Stochastic Simulation Models

    Full text link
    We consider the problem of estimating an expected outcome from a stochastic simulation model. Our goal is to develop a theoretical framework on importance sampling for such estimation. By investigating the variance of an importance sampling estimator, we propose a two-stage procedure that involves a regression stage and a sampling stage to construct the final estimator. We introduce a parametric and a nonparametric regression estimator in the first stage and study how the allocation between the two stages affects the performance of the final estimator. We analyze the variance reduction rates and derive oracle properties of both methods. We evaluate the empirical performances of the methods using two numerical examples and a case study on wind turbine reliability evaluation.Comment: 37 pages, 6 figures, 2 tables. Accepted to the Electronic Journal of Statistic

    Causal inference for social network data

    Full text link
    We describe semiparametric estimation and inference for causal effects using observational data from a single social network. Our asymptotic result is the first to allow for dependence of each observation on a growing number of other units as sample size increases. While previous methods have generally implicitly focused on one of two possible sources of dependence among social network observations, we allow for both dependence due to transmission of information across network ties, and for dependence due to latent similarities among nodes sharing ties. We describe estimation and inference for new causal effects that are specifically of interest in social network settings, such as interventions on network ties and network structure. Using our methods to reanalyze the Framingham Heart Study data used in one of the most influential and controversial causal analyses of social network data, we find that after accounting for network structure there is no evidence for the causal effects claimed in the original paper
    corecore