531 research outputs found

    Towards Smarter Fluorescence Microscopy: Enabling Adaptive Acquisition Strategies With Optimized Photon Budget

    Get PDF
    Fluorescence microscopy is an invaluable technique for studying the intricate process of organism development. The acquisition process, however, is associated with the fundamental trade-off between the quality and reliability of the acquired data. On one hand, the goal of capturing the development in its entirety, often times across multiple spatial and temporal scales, requires extended acquisition periods. On the other hand, high doses of light required for such experiments are harmful for living samples and can introduce non-physiological artifacts in the normal course of development. Conventionally, a single set of acquisition parameters is chosen in the beginning of the acquisition and constitutes the experimenter’s best guess of the overall optimal configuration within the aforementioned trade-off. In the paradigm of adaptive microscopy, in turn, one aims at achieving more efficient photon budget distribution by dynamically adjusting the acquisition parameters to the changing properties of the sample. In this thesis, I explore the principles of adaptive microscopy and propose a range of improvements for two real imaging scenarios. Chapter 2 summarizes the design and implementation of an adaptive pipeline for efficient observation of the asymmetrically dividing neurogenic progenitors in Zebrafish retina. In the described approach the fast and expensive acquisition mode is automatically activated only when the mitotic cells are present in the field of view. The method illustrates the benefits of the adaptive acquisition in the common scenario of the individual events of interest being sparsely distributed throughout the duration of the acquisition. Chapter 3 focuses on computational aspects of segmentation-based adaptive schemes for efficient acquisition of the developing Drosophila pupal wing. Fast sample segmentation is shown to provide a valuable output for the accurate evaluation of the sample morphology and dynamics in real time. This knowledge proves instrumental for adjusting the acquisition parameters to the current properties of the sample and reducing the required photon budget with minimal effects to the quality of the acquired data. Chapter 4 addresses the generation of synthetic training data for learning-based methods in bioimage analysis, making them more practical and accessible for smart microscopy pipelines. State-of-the-art deep learning models trained exclusively on the generated synthetic data are shown to yield powerful predictions when applied to the real microscopy images. In the end, in-depth evaluation of the segmentation quality of both real and synthetic data-based models illustrates the important practical aspects of the approach and outlines the directions for further research

    Making microscopy count: quantitative light microscopy of dynamic processes in living plants

    Get PDF
    First published: April 2016This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Cell theory has officially reached 350 years of age as the first use of the word ‘cell’ in a biological context can be traced to a description of plant material by Robert Hooke in his historic publication “Micrographia: or some physiological definitions of minute bodies”. The 2015 Royal Microscopical Society Botanical Microscopy meeting was a celebration of the streams of investigation initiated by Hooke to understand at the sub-cellular scale how plant cell function and form arises. Much of the work presented, and Honorary Fellowships awarded, reflected the advanced application of bioimaging informatics to extract quantitative data from micrographs that reveal dynamic molecular processes driving cell growth and physiology. The field has progressed from collecting many pixels in multiple modes to associating these measurements with objects or features that are meaningful biologically. The additional complexity involves object identification that draws on a different type of expertise from computer science and statistics that is often impenetrable to biologists. There are many useful tools and approaches being developed, but we now need more inter-disciplinary exchange to use them effectively. In this review we show how this quiet revolution has provided tools available to any personal computer user. We also discuss the oft-neglected issue of quantifying algorithm robustness and the exciting possibilities offered through the integration of physiological information generated by biosensors with object detection and tracking

    Taking aim at moving targets in computational cell migration

    Get PDF
    Cell migration is central to the development and maintenance of multicellular organisms. Fundamental understanding of cell migration can, for example, direct novel therapeutic strategies to control invasive tumor cells. However, the study of cell migration yields an overabundance of experimental data that require demanding processing and analysis for results extraction. Computational methods and tools have therefore become essential in the quantification and modeling of cell migration data. We review computational approaches for the key tasks in the quantification of in vitro cell migration: image pre-processing, motion estimation and feature extraction. Moreover, we summarize the current state-of-the-art for in silico modeling of cell migration. Finally, we provide a list of available software tools for cell migration to assist researchers in choosing the most appropriate solution for their needs
    corecore