6,648 research outputs found

    Fast, Simple Calcium Imaging Segmentation with Fully Convolutional Networks

    Full text link
    Calcium imaging is a technique for observing neuron activity as a series of images showing indicator fluorescence over time. Manually segmenting neurons is time-consuming, leading to research on automated calcium imaging segmentation (ACIS). We evaluated several deep learning models for ACIS on the Neurofinder competition datasets and report our best model: U-Net2DS, a fully convolutional network that operates on 2D mean summary images. U-Net2DS requires minimal domain-specific pre/post-processing and parameter adjustment, and predictions are made on full 512×512512\times512 images at ≈\approx9K images per minute. It ranks third in the Neurofinder competition (F1=0.569F_1=0.569) and is the best model to exclusively use deep learning. We also demonstrate useful segmentations on data from outside the competition. The model's simplicity, speed, and quality results make it a practical choice for ACIS and a strong baseline for more complex models in the future.Comment: Accepted to 3rd Workshop on Deep Learning in Medical Image Analysis (http://cs.adelaide.edu.au/~dlmia3/

    Adaptive Graph via Multiple Kernel Learning for Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of nonnegative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.Comment: This paper has been withdrawn by the author due to the terrible writin

    Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    Full text link
    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark's data-parallel model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance
    • …
    corecore