6,432 research outputs found

    Noisy Optimization Complexity Under Locality Assumption

    Get PDF
    International audienceIn spite of various recent publications on the subject, there are still gaps between upper and lower bounds in evolutionary optimization for noisy objective function. In this paper we reduce the gap, and get tight bounds within logarithmic factors in the case of small noise and no long-distance influence on the objective function

    Semi-Supervised Sound Source Localization Based on Manifold Regularization

    Full text link
    Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal to noise ratio (SNR). In some scenarios, e.g. in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high dimensional acoustic samples indeed lie on a low dimensional manifold and can be embedded into a low dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed Manifold Regularization for Localization (MRL), is implemented in an adaptive manner. The initialization is conducted with only few labelled samples attached with their respective source locations, and then the system is gradually adapted as new unlabelled samples (with unknown source locations) are received. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation (GCC) algorithm as a baseline

    How Many Pairwise Preferences Do We Need to Rank A Graph Consistently?

    Full text link
    We consider the problem of optimal recovery of true ranking of nn items from a randomly chosen subset of their pairwise preferences. It is well known that without any further assumption, one requires a sample size of Ω(n2)\Omega(n^2) for the purpose. We analyze the problem with an additional structure of relational graph G([n],E)G([n],E) over the nn items added with an assumption of \emph{locality}: Neighboring items are similar in their rankings. Noting the preferential nature of the data, we choose to embed not the graph, but, its \emph{strong product} to capture the pairwise node relationships. Furthermore, unlike existing literature that uses Laplacian embedding for graph based learning problems, we use a richer class of graph embeddings---\emph{orthonormal representations}---that includes (normalized) Laplacian as its special case. Our proposed algorithm, {\it Pref-Rank}, predicts the underlying ranking using an SVM based approach over the chosen embedding of the product graph, and is the first to provide \emph{statistical consistency} on two ranking losses: \emph{Kendall's tau} and \emph{Spearman's footrule}, with a required sample complexity of O(n2χ(Gˉ))23O(n^2 \chi(\bar{G}))^{\frac{2}{3}} pairs, χ(Gˉ)\chi(\bar{G}) being the \emph{chromatic number} of the complement graph Gˉ\bar{G}. Clearly, our sample complexity is smaller for dense graphs, with χ(Gˉ)\chi(\bar G) characterizing the degree of node connectivity, which is also intuitive due to the locality assumption e.g. O(n43)O(n^\frac{4}{3}) for union of kk-cliques, or O(n53)O(n^\frac{5}{3}) for random and power law graphs etc.---a quantity much smaller than the fundamental limit of Ω(n2)\Omega(n^2) for large nn. This, for the first time, relates ranking complexity to structural properties of the graph. We also report experimental evaluations on different synthetic and real datasets, where our algorithm is shown to outperform the state-of-the-art methods.Comment: In Thirty-Third AAAI Conference on Artificial Intelligence, 201

    Safe Exploration for Optimization with Gaussian Processes

    Get PDF
    We consider sequential decision problems under uncertainty, where we seek to optimize an unknown function from noisy samples. This requires balancing exploration (learning about the objective) and exploitation (localizing the maximum), a problem well-studied in the multi-armed bandit literature. In many applications, however, we require that the sampled function values exceed some prespecified "safety" threshold, a requirement that existing algorithms fail to meet. Examples include medical applications where patient comfort must be guaranteed, recommender systems aiming to avoid user dissatisfaction, and robotic control, where one seeks to avoid controls causing physical harm to the platform. We tackle this novel, yet rich, set of problems under the assumption that the unknown function satisfies regularity conditions expressed via a Gaussian process prior. We develop an efficient algorithm called SafeOpt, and theoretically guarantee its convergence to a natural notion of optimum reachable under safety constraints. We evaluate SafeOpt on synthetic data, as well as two real applications: movie recommendation, and therapeutic spinal cord stimulation
    corecore