899 research outputs found

    Shape Interaction Matrix Revisited and Robustified: Efficient Subspace Clustering with Corrupted and Incomplete Data

    Full text link
    The Shape Interaction Matrix (SIM) is one of the earliest approaches to performing subspace clustering (i.e., separating points drawn from a union of subspaces). In this paper, we revisit the SIM and reveal its connections to several recent subspace clustering methods. Our analysis lets us derive a simple, yet effective algorithm to robustify the SIM and make it applicable to realistic scenarios where the data is corrupted by noise. We justify our method by intuitive examples and the matrix perturbation theory. We then show how this approach can be extended to handle missing data, thus yielding an efficient and general subspace clustering algorithm. We demonstrate the benefits of our approach over state-of-the-art subspace clustering methods on several challenging motion segmentation and face clustering problems, where the data includes corrupted and missing measurements.Comment: This is an extended version of our iccv15 pape

    An Algorithm for Gluinos on the Lattice

    Get PDF
    L\"uscher's local bosonic algorithm for Monte Carlo simulations of quantum field theories with fermions is applied to the simulation of a possibly supersymmetric Yang-Mills theory with a Majorana fermion in the adjoint representation. Combined with a correction step in a two-step polynomial approximation scheme, the obtained algorithm seems to be promising and could be competitive with more conventional algorithms based on discretized classical (``molecular dynamics'') equations of motion. The application of the considered polynomial approximation scheme to optimized hopping parameter expansions is also discussed.Comment: latex2e, 23 pages, 4 figures with epsfig. Section 5 is rewritten, more data are added and the discussion is extende

    MIMO Transceivers With Decision Feedback and Bit Loading: Theory and Optimization

    Get PDF
    This paper considers MIMO transceivers with linear precoders and decision feedback equalizers (DFEs), with bit allocation at the transmitter. Zero-forcing (ZF) is assumed. Considered first is the minimization of transmitted power, for a given total bit rate and a specified set of error probabilities for the symbol streams. The precoder and DFE matrices are optimized jointly with bit allocation. It is shown that the generalized triangular decomposition (GTD) introduced by Jiang, Li, and Hager offers an optimal family of solutions. The optimal linear transceiver (which has a linear equalizer rather than a DFE) with optimal bit allocation is a member of this family. This shows formally that, under optimal bit allocation, linear and DFE transceivers achieve the same minimum power. The DFE transceiver using the geometric mean decomposition (GMD) is another member of this optimal family, and is such that optimal bit allocation yields identical bits for all symbol streams—no bit allocation is necessary—when the specified error probabilities are identical for all streams. The QR-based system used in VBLAST is yet another member of the optimal family and is particularly well-suited when limited feedback is allowed from receiver to transmitter. Two other optimization problems are then considered: a) minimization of power for specified set of bit rates and error probabilities (the QoS problem), and b) maximization of bit rate for fixed set of error probabilities and power. It is shown in both cases that the GTD yields an optimal family of solutions
    corecore