10,020 research outputs found

    Noisy population recovery in polynomial time

    Full text link
    In the noisy population recovery problem of Dvir et al., the goal is to learn an unknown distribution ff on binary strings of length nn from noisy samples. For some parameter μ[0,1]\mu \in [0,1], a noisy sample is generated by flipping each coordinate of a sample from ff independently with probability (1μ)/2(1-\mu)/2. We assume an upper bound kk on the size of the support of the distribution, and the goal is to estimate the probability of any string to within some given error ε\varepsilon. It is known that the algorithmic complexity and sample complexity of this problem are polynomially related to each other. We show that for μ>0\mu > 0, the sample complexity (and hence the algorithmic complexity) is bounded by a polynomial in kk, nn and 1/ε1/\varepsilon improving upon the previous best result of poly(kloglogk,n,1/ε)\mathsf{poly}(k^{\log\log k},n,1/\varepsilon) due to Lovett and Zhang. Our proof combines ideas from Lovett and Zhang with a \emph{noise attenuated} version of M\"{o}bius inversion. In turn, the latter crucially uses the construction of \emph{robust local inverse} due to Moitra and Saks

    A Polynomial Time Algorithm for Lossy Population Recovery

    Full text link
    We give a polynomial time algorithm for the lossy population recovery problem. In this problem, the goal is to approximately learn an unknown distribution on binary strings of length nn from lossy samples: for some parameter μ\mu each coordinate of the sample is preserved with probability μ\mu and otherwise is replaced by a `?'. The running time and number of samples needed for our algorithm is polynomial in nn and 1/ε1/\varepsilon for each fixed μ>0\mu>0. This improves on algorithm of Wigderson and Yehudayoff that runs in quasi-polynomial time for any μ>0\mu > 0 and the polynomial time algorithm of Dvir et al which was shown to work for μ0.30\mu \gtrapprox 0.30 by Batman et al. In fact, our algorithm also works in the more general framework of Batman et al. in which there is no a priori bound on the size of the support of the distribution. The algorithm we analyze is implicit in previous work; our main contribution is to analyze the algorithm by showing (via linear programming duality and connections to complex analysis) that a certain matrix associated with the problem has a robust local inverse even though its condition number is exponentially small. A corollary of our result is the first polynomial time algorithm for learning DNFs in the restriction access model of Dvir et al

    Superresolution without Separation

    Full text link
    This paper provides a theoretical analysis of diffraction-limited superresolution, demonstrating that arbitrarily close point sources can be resolved in ideal situations. Precisely, we assume that the incoming signal is a linear combination of M shifted copies of a known waveform with unknown shifts and amplitudes, and one only observes a finite collection of evaluations of this signal. We characterize properties of the base waveform such that the exact translations and amplitudes can be recovered from 2M + 1 observations. This recovery is achieved by solving a a weighted version of basis pursuit over a continuous dictionary. Our methods combine classical polynomial interpolation techniques with contemporary tools from compressed sensing.Comment: 23 pages, 8 figure
    corecore