2,793 research outputs found

    Sparse Group Inductive Matrix Completion

    Full text link
    We consider the problem of matrix completion with side information (\textit{inductive matrix completion}). In real-world applications many side-channel features are typically non-informative making feature selection an important part of the problem. We incorporate feature selection into inductive matrix completion by proposing a matrix factorization framework with group-lasso regularization on side feature parameter matrices. We demonstrate, that the theoretical sample complexity for the proposed method is much lower compared to its competitors in sparse problems, and propose an efficient optimization algorithm for the resulting low-rank matrix completion problem with sparsifying regularizers. Experiments on synthetic and real-world datasets show that the proposed approach outperforms other methods

    Provable Inductive Robust PCA via Iterative Hard Thresholding

    Full text link
    The robust PCA problem, wherein, given an input data matrix that is the superposition of a low-rank matrix and a sparse matrix, we aim to separate out the low-rank and sparse components, is a well-studied problem in machine learning. One natural question that arises is that, as in the inductive setting, if features are provided as input as well, can we hope to do better? Answering this in the affirmative, the main goal of this paper is to study the robust PCA problem while incorporating feature information. In contrast to previous works in which recovery guarantees are based on the convex relaxation of the problem, we propose a simple iterative algorithm based on hard-thresholding of appropriate residuals. Under weaker assumptions than previous works, we prove the global convergence of our iterative procedure; moreover, it admits a much faster convergence rate and lesser computational complexity per iteration. In practice, through systematic synthetic and real data simulations, we confirm our theoretical findings regarding improvements obtained by using feature information

    Interpretable Matrix Completion: A Discrete Optimization Approach

    Full text link
    We consider the problem of matrix completion on an n×mn \times m matrix. We introduce the problem of Interpretable Matrix Completion that aims to provide meaningful insights for the low-rank matrix using side information. We show that the problem can be reformulated as a binary convex optimization problem. We design OptComplete, based on a novel concept of stochastic cutting planes to enable efficient scaling of the algorithm up to matrices of sizes n=106n=10^6 and m=106m=10^6. We report experiments on both synthetic and real-world datasets that show that OptComplete has favorable scaling behavior and accuracy when compared with state-of-the-art methods for other types of matrix completion, while providing insight on the factors that affect the matrix.Comment: Submitted to Operational Researc

    Harmless interpolation of noisy data in regression

    Full text link
    A continuing mystery in understanding the empirical success of deep neural networks is their ability to achieve zero training error and generalize well, even when the training data is noisy and there are more parameters than data points. We investigate this overparameterized regime in linear regression, where all solutions that minimize training error interpolate the data, including noise. We characterize the fundamental generalization (mean-squared) error of any interpolating solution in the presence of noise, and show that this error decays to zero with the number of features. Thus, overparameterization can be explicitly beneficial in ensuring harmless interpolation of noise. We discuss two root causes for poor generalization that are complementary in nature -- signal "bleeding" into a large number of alias features, and overfitting of noise by parsimonious feature selectors. For the sparse linear model with noise, we provide a hybrid interpolating scheme that mitigates both these issues and achieves order-optimal MSE over all possible interpolating solutions.Comment: 52 pages, expanded version of the paper presented at ITA in San Diego in Feb 2019, ISIT in Paris in July 2019, at Simons in July, and as a plenary at ITW in Visby in August 201

    Multi-label Learning with Missing Labels using Mixed Dependency Graphs

    Full text link
    This work focuses on the problem of multi-label learning with missing labels (MLML), which aims to label each test instance with multiple class labels given training instances that have an incomplete/partial set of these labels. The key point to handle missing labels is propagating the label information from provided labels to missing labels, through a dependency graph that each label of each instance is treated as a node. We build this graph by utilizing different types of label dependencies. Specifically, the instance-level similarity is served as undirected edges to connect the label nodes across different instances and the semantic label hierarchy is used as directed edges to connect different classes. This base graph is referred to as the mixed dependency graph, as it includes both undirected and directed edges. Furthermore, we present another two types of label dependencies to connect the label nodes across different classes. One is the class co-occurrence, which is also encoded as undirected edges. Combining with the base graph, we obtain a new mixed graph, called MG-CO (mixed graph with co-occurrence). The other is the sparse and low rank decomposition of the whole label matrix, to embed high-order dependencies over all labels. Combining with the base graph, the new mixed graph is called as MG-SL (mixed graph with sparse and low rank decomposition). Based on MG-CO and MG-SL, we propose two convex transductive formulations of the MLML problem, denoted as MLMG-CO and MLMG-SL, respectively. Two important applications, including image annotation and tag based image retrieval, can be jointly handled using our proposed methods. Experiments on benchmark datasets show that our methods give significant improvements in performance and robustness to missing labels over the state-of-the-art methods.Comment: Published in International Journal of Computer Vision, 201

    Tensor Completion Algorithms in Big Data Analytics

    Full text link
    Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in areas like data mining, computer vision, signal processing, and neuroscience. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity. We characterize these advances from four perspectives: general tensor completion algorithms, tensor completion with auxiliary information (variety), scalable tensor completion algorithms (volume), and dynamic tensor completion algorithms (velocity). Further, we identify several tensor completion applications on real-world data-driven problems and present some common experimental frameworks popularized in the literature. Our goal is to summarize these popular methods and introduce them to researchers and practitioners for promoting future research and applications. We conclude with a discussion of key challenges and promising research directions in this community for future exploration

    Collaborative Self-Attention for Recommender Systems

    Full text link
    Recommender systems (RS), which have been an essential part in a wide range of applications, can be formulated as a matrix completion (MC) problem. To boost the performance of MC, matrix completion with side information, called inductive matrix completion (IMC), was further proposed. In real applications, the factorized version of IMC is more favored due to its efficiency of optimization and implementation. Regarding the factorized version, traditional IMC method can be interpreted as learning an individual representation for each feature, which is independent from each other. Moreover, representations for the same features are shared across all users/items. However, the independent characteristic for features and shared characteristic for the same features across all users/items may limit the expressiveness of the model. The limitation also exists in variants of IMC, such as deep learning based IMC models. To break the limitation, we generalize recent advances of self-attention mechanism to IMC and propose a context-aware model called collaborative self-attention (CSA), which can jointly learn context-aware representations for features and perform inductive matrix completion process. Extensive experiments on three large-scale datasets from real RS applications demonstrate effectiveness of CSA.Comment: There are large modification

    Forward - Backward Greedy Algorithms for Atomic Norm Regularization

    Full text link
    In many signal processing applications, the aim is to reconstruct a signal that has a simple representation with respect to a certain basis or frame. Fundamental elements of the basis known as "atoms" allow us to define "atomic norms" that can be used to formulate convex regularizations for the reconstruction problem. Efficient algorithms are available to solve these formulations in certain special cases, but an approach that works well for general atomic norms, both in terms of speed and reconstruction accuracy, remains to be found. This paper describes an optimization algorithm called CoGEnT that produces solutions with succinct atomic representations for reconstruction problems, generally formulated with atomic-norm constraints. CoGEnT combines a greedy selection scheme based on the conditional gradient approach with a backward (or "truncation") step that exploits the quadratic nature of the objective to reduce the basis size. We establish convergence properties and validate the algorithm via extensive numerical experiments on a suite of signal processing applications. Our algorithm and analysis also allow for inexact forward steps and for occasional enhancements of the current representation to be performed. CoGEnT can outperform the basic conditional gradient method, and indeed many methods that are tailored to specific applications, when the enhancement and truncation steps are defined appropriately. We also introduce several novel applications that are enabled by the atomic-norm framework, including tensor completion, moment problems in signal processing, and graph deconvolution.Comment: To appear in IEEE Transactions on Signal Processin

    Crowd Labeling: a survey

    Full text link
    Recently, there has been a burst in the number of research projects on human computation via crowdsourcing. Multiple choice (or labeling) questions could be referred to as a common type of problem which is solved by this approach. As an application, crowd labeling is applied to find true labels for large machine learning datasets. Since crowds are not necessarily experts, the labels they provide are rather noisy and erroneous. This challenge is usually resolved by collecting multiple labels for each sample, and then aggregating them to estimate the true label. Although the mechanism leads to high-quality labels, it is not actually cost-effective. As a result, efforts are currently made to maximize the accuracy in estimating true labels, while fixing the number of acquired labels. This paper surveys methods to aggregate redundant crowd labels in order to estimate unknown true labels. It presents a unified statistical latent model where the differences among popular methods in the field correspond to different choices for the parameters of the model. Afterwards, algorithms to make inference on these models will be surveyed. Moreover, adaptive methods which iteratively collect labels based on the previously collected labels and estimated models will be discussed. In addition, this paper compares the distinguished methods, and provides guidelines for future work required to address the current open issues.Comment: Under consideration for publication in Knowledge and Information System

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201
    • …
    corecore