413 research outputs found

    RFID Key Establishment Against Active Adversaries

    Full text link
    We present a method to strengthen a very low cost solution for key agreement with a RFID device. Starting from a work which exploits the inherent noise on the communication link to establish a key by public discussion, we show how to protect this agreement against active adversaries. For that purpose, we unravel integrity (I)(I)-codes suggested by Cagalj et al. No preliminary key distribution is required.Comment: This work was presented at the First IEEE Workshop on Information Forensics and Security (WIFS'09) (update including minor remarks and references to match the presented version

    SecuCode: Intrinsic PUF Entangled Secure Wireless Code Dissemination for Computational RFID Devices

    Full text link
    The simplicity of deployment and perpetual operation of energy harvesting devices provides a compelling proposition for a new class of edge devices for the Internet of Things. In particular, Computational Radio Frequency Identification (CRFID) devices are an emerging class of battery-free, computational, sensing enhanced devices that harvest all of their energy for operation. Despite wireless connectivity and powering, secure wireless firmware updates remains an open challenge for CRFID devices due to: intermittent powering, limited computational capabilities, and the absence of a supervisory operating system. We present, for the first time, a secure wireless code dissemination (SecuCode) mechanism for CRFIDs by entangling a device intrinsic hardware security primitive Static Random Access Memory Physical Unclonable Function (SRAM PUF) to a firmware update protocol. The design of SecuCode: i) overcomes the resource-constrained and intermittently powered nature of the CRFID devices; ii) is fully compatible with existing communication protocols employed by CRFID devices in particular, ISO-18000-6C protocol; and ii) is built upon a standard and industry compliant firmware compilation and update method realized by extending a recent framework for firmware updates provided by Texas Instruments. We build an end-to-end SecuCode implementation and conduct extensive experiments to demonstrate standards compliance, evaluate performance and security.Comment: Accepted to the IEEE Transactions on Dependable and Secure Computin

    RFID ownership transfer with positive secrecy capacity channels

    Get PDF
    RFID ownership transfer protocols (OTPs) transfer tag ownership rights. Recently, there has been considerable interest in such protocols, however, guaranteeing privacy for symmetric-key settings without trusted third parties (TTPs) is a challenge still unresolved. In this paper, we address this issue and show that it can be solved by using channels with positive secrecy capacity. We implement these channels with noisy tags and provide practical values, thus proving that perfect secrecy is theoretically possible. We then define a communication model that captures spatiotemporal events and describe a first example of symmetric-key based OTP that: (i) is formally secure in the proposed communication model and (ii) achieves privacy with a noisy tag wiretap channel without TTPs

    Lightweight Mutual Authentication Protocol for Low Cost RFID Tags

    Full text link
    Radio Frequency Identification (RFID) technology one of the most promising technologies in the field of ubiquitous computing. Indeed, RFID technology may well replace barcode technology. Although it offers many advantages over other identification systems, there are also associated security risks that are not easy to be addressed. When designing a real lightweight authentication protocol for low cost RFID tags, a number of challenges arise due to the extremely limited computational, storage and communication abilities of Low-cost RFID tags. This paper proposes a real mutual authentication protocol for low cost RFID tags. The proposed protocol prevents passive attacks as active attacks are discounted when designing a protocol to meet the requirements of low cost RFID tags. However the implementation of the protocol meets the limited abilities of low cost RFID tags.Comment: 11 Pages, IJNS

    Lightweight and Practical Anonymous Authentication Protocol for RFID systems using physically unclonable functions

    Get PDF
    Radio frequency identification (RFID) has been considered one of the imperative requirements for implementation of Internet-of-Things applications. It helps to solve the identification issues of the things in a cost-effective manner, but RFID systems often suffer from various security and privacy issues. To solve those issues for RFID systems, many schemes have been recently proposed by using the cryptographic primitive, called physically uncloneable functions (PUFs), which can ensure a tamper-evident feature. However, to the best of our knowledge, none of them has succeeded to address the problem of privacy preservation with the resistance of DoS attacks in a practical way. For instance, existing schemes need to rely on exhaustive search operations to identify a tag, and also suffer from several security and privacy related issues. Furthermore, a tag needs to store some security credentials (e.g., secret shared keys), which may cause several issues such as loss of forward and backward secrecy and large storage costs. Therefore, in this paper, we first propose a lightweight privacy-preserving authentication protocol for the RFID system by considering the ideal PUF environment. Subsequently, we introduce an enhanced protocol which can support the noisy PUF environment. It is argued that both of our protocols can overcome the limitations of existing schemes, and further ensure more security properties. By analyzing the performance, we have shown that the proposed solutions are secure, efficient, practical, and effective for the resource-constraint RFID tag

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    ALGSICS - Combining physics and cryptography to enhance security and privacy in RFID systems

    Get PDF
    In this paper, we introduce several new mechanisms that are cheap to implement or integrate into RFID tags and that at the same time enhance their security and privacy properties. Our aim is to provide solutions that make use of existing (or expected) functionality on the tag or that are inherently cheap and thus, enhance the privacy friendliness of the technology "almost" for free. Our proposals, for example, make use of environmental information (presence of light temperature, humidity, etc.) to disable or enable the RFID tag. A second possibility that we explore is the use of delays in revealing a secret key used to later establish a secure communication channel. We also introduce the idea of a "sticky tag," which can be used to re-enable a disabled (or killed) tag whenever the user considers it to be safe. We discuss the security and describe usage scenarios for all solutions. Finally, we review previous works that use physical principles to provide security and privacy in RFID systems

    The Study of RFID Authentication Protocols and Security of Some Popular RFID Tags

    Get PDF

    CriptografĂ­a ligera en dispositivos de identificaciĂłn por radiofrecuencia- RFID

    Get PDF
    Esta tesis se centra en el estudio de la tecnologĂ­a de identificaciĂłn por radiofrecuencia (RFID), la cual puede ser considerada como una de las tecnologĂ­as mĂĄs prometedoras dentro del ĂĄrea de la computaciĂłn ubicua. La tecnologĂ­a RFID podrĂ­a ser el sustituto de los cĂłdigos de barras. Aunque la tecnologĂ­a RFID ofrece numerosas ventajas frente a otros sistemas de identificaciĂłn, su uso lleva asociados riesgos de seguridad, los cuales no son fĂĄciles de resolver. Los sistemas RFID pueden ser clasificados, atendiendo al coste de las etiquetas, distinguiendo principalmente entre etiquetas de alto coste y de bajo coste. Nuestra investigaciĂłn se centra fundamentalmente en estas Ășltimas. El estudio y anĂĄlisis del estado del arte nos ha permitido identificar la necesidad de desarrollar soluciones criptogrĂĄficas ligeras adecuadas para estos dispositivos limitados. El uso de soluciones criptogrĂĄficas estĂĄndar supone una aproximaciĂłn correcta desde un punto de vista puramente teĂłrico. Sin embargo, primitivas criptogrĂĄficas estĂĄndar (funciones resumen, cĂłdigo de autenticaciĂłn de mensajes, cifradores de bloque/flujo, etc.) exceden las capacidades de las etiquetas de bajo coste. Por tanto, es necesario el uso de criptografĂ­a ligera._______________________________________This thesis examines the security issues of Radio Frequency Identification (RFID) technology, one of the most promising technologies in the field of ubiquitous computing. Indeed, RFID technology may well replace barcode technology. Although it offers many advantages over other identification systems, there are also associated security risks that are not easy to address. RFID systems can be classified according to tag price, with distinction between high-cost and low-cost tags. Our research work focuses mainly on low-cost RFID tags. An initial study and analysis of the state of the art identifies the need for lightweight cryptographic solutions suitable for these very constrained devices. From a purely theoretical point of view, standard cryptographic solutions may be a correct approach. However, standard cryptographic primitives (hash functions, message authentication codes, block/stream ciphers, etc.) are quite demanding in terms of circuit size, power consumption and memory size, so they make costly solutions for low-cost RFID tags. Lightweight cryptography is therefore a pressing need. First, we analyze the security of the EPC Class-1 Generation-2 standard, which is considered the universal standard for low-cost RFID tags. Secondly, we cryptanalyze two new proposals, showing their unsuccessful attempt to increase the security level of the specification without much further hardware demands. Thirdly, we propose a new protocol resistant to passive attacks and conforming to low-cost RFID tag requirements. In this protocol, costly computations are only performed by the reader, and security related computations in the tag are restricted to very simple operations. The protocol is inspired in the family of Ultralightweight Mutual Authentication Protocols (UMAP: M2AP, EMAP, LMAP) and the recently proposed SASI protocol. The thesis also includes the first published cryptanalysis of xi SASI under the weakest attacker model, that is, a passive attacker. Fourthly, we propose a new protocol resistant to both passive and active attacks and suitable for moderate-cost RFID tags. We adapt Shieh et.’s protocol for smart cards, taking into account the unique features of RFID systems. Finally, because this protocol is based on the use of cryptographic primitives and standard cryptographic primitives are not supported, we address the design of lightweight cryptographic primitives. Specifically, we propose a lightweight hash function (Tav-128) and a lightweight Pseudo-Random Number Generator (LAMED and LAMED-EPC).We analyze their security level and performance, as well as their hardware requirements and show that both could be realistically implemented, even in low-cost RFID tags
    • 

    corecore