44,176 research outputs found

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware

    Power scalable implementation of artificial neural networks

    No full text
    As the use of Artificial Neural Network (ANN) in mobile embedded devices gets more pervasive, power consumption of ANN hardware is becoming a major limiting factor. Although considerable research efforts are now directed towards low-power implementations of ANN, the issue of dynamic power scalability of the implemented design has been largely overlooked. In this paper, we discuss the motivation and basic principles for implementing power scaling in ANN Hardware. With the help of a simple example, we demonstrate how power scaling can be achieved with dynamic pruning techniques

    Neuromorphic Learning towards Nano Second Precision

    Full text link
    Temporal coding is one approach to representing information in spiking neural networks. An example of its application is the location of sounds by barn owls that requires especially precise temporal coding. Dependent upon the azimuthal angle, the arrival times of sound signals are shifted between both ears. In order to deter- mine these interaural time differences, the phase difference of the signals is measured. We implemented this biologically inspired network on a neuromorphic hardware system and demonstrate spike-timing dependent plasticity on an analog, highly accelerated hardware substrate. Our neuromorphic implementation enables the resolution of time differences of less than 50 ns. On-chip Hebbian learning mechanisms select inputs from a pool of neurons which code for the same sound frequency. Hence, noise caused by different synaptic delays across these inputs is reduced. Furthermore, learning compensates for variations on neuronal and synaptic parameters caused by device mismatch intrinsic to the neuromorphic substrate.Comment: 7 pages, 7 figures, presented at IJCNN 2013 in Dallas, TX, USA. IJCNN 2013. Corrected version with updated STDP curves IJCNN 201

    Pattern representation and recognition with accelerated analog neuromorphic systems

    Full text link
    Despite being originally inspired by the central nervous system, artificial neural networks have diverged from their biological archetypes as they have been remodeled to fit particular tasks. In this paper, we review several possibilites to reverse map these architectures to biologically more realistic spiking networks with the aim of emulating them on fast, low-power neuromorphic hardware. Since many of these devices employ analog components, which cannot be perfectly controlled, finding ways to compensate for the resulting effects represents a key challenge. Here, we discuss three different strategies to address this problem: the addition of auxiliary network components for stabilizing activity, the utilization of inherently robust architectures and a training method for hardware-emulated networks that functions without perfect knowledge of the system's dynamics and parameters. For all three scenarios, we corroborate our theoretical considerations with experimental results on accelerated analog neuromorphic platforms.Comment: accepted at ISCAS 201

    Fast non-recursive extraction of individual harmonics using artificial neural networks

    Get PDF
    A collaborative work between Northumbria University and University of Peradeniya (Sri Lanka). It presents a novel technique based on Artificial Neural Networks for fast extraction of individual harmonic components. The technique was tested on a real-time hardware platform and results obtained showed that it is significantly faster and less computationally complex than other techniques. The paper complements other publications by the author (see paper 1) on the important area of “Power Quality” of electric power networks. It involves the application of advanced techniques in artificial intelligence to solve power systems problems
    • 

    corecore