407 research outputs found

    A software tool for the semi-automatic segmentation of architectural 3D models with semantic annotation and Web fruition

    Get PDF
    The thorough documentation of Cultural Heritage artifacts is a fundamental concern for management and preservation. In this context, the semantic segmentation and annotation of 3D models of historic buildings is an important modern topic. This work describes a software tool currently under development, for interactive and semi-automatic segmentation, characterization, and annotation of 3D models produced by photogrammetric surveys. The system includes some generic and well-known segmentation approaches, such as region growing and Locally Convex Connected Patches segmentation, but it also contains original code for specific semantic segmentation of parts of buildings, in particular straight stairs and circular-section columns. Furthermore, a method for automatic wall-surface characterization is devoted to rusticated-ashlar detection, in view of masonry-unit segmentation. The software is modular, so allowing easy expandability. It also has tools for data encoding into formats ready for model fruition by Web technologies. These results were partly obtained in collaboration with Corvallis SPA (Padua-Italy, http://www.corvallis.it)

    Depth Estimation Using 2D RGB Images

    Get PDF
    Single image depth estimation is an ill-posed problem. That is, it is not mathematically possible to uniquely estimate the 3rd dimension (or depth) from a single 2D image. Hence, additional constraints need to be incorporated in order to regulate the solution space. As a result, in the first part of this dissertation, the idea of constraining the model for more accurate depth estimation by taking advantage of the similarity between the RGB image and the corresponding depth map at the geometric edges of the 3D scene is explored. Although deep learning based methods are very successful in computer vision and handle noise very well, they suffer from poor generalization when the test and train distributions are not close. While, the geometric methods do not have the generalization problem since they benefit from temporal information in an unsupervised manner. They are sensitive to noise, though. At the same time, explicitly modeling of a dynamic scenes as well as flexible objects in traditional computer vision methods is a big challenge. Considering the advantages and disadvantages of each approach, a hybrid method, which benefits from both, is proposed here by extending traditional geometric models’ abilities to handle flexible and dynamic objects in the scene. This is made possible by relaxing geometric computer vision rules from one motion model for some areas of the scene into one for every pixel in the scene. This enables the model to detect even small, flexible, floating debris in a dynamic scene. However, it makes the optimization under-constrained. To change the optimization from under-constrained to over-constrained while maintaining the model’s flexibility, ”moving object detection loss” and ”synchrony loss” are designed. The algorithm is trained in an unsupervised fashion. The primary results are in no way comparable to the current state of the art. Because the training process is so slow, it is difficult to compare it to the current state of the art. Also, the algorithm lacks stability. In addition, the optical flow model is extremely noisy and naive. At the end, some solutions are suggested to address these issues

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    3D Shape Descriptor-Based Facial Landmark Detection: A Machine Learning Approach

    Get PDF
    Facial landmark detection on 3D human faces has had numerous applications in the literature such as establishing point-to-point correspondence between 3D face models which is itself a key step for a wide range of applications like 3D face detection and authentication, matching, reconstruction, and retrieval, to name a few. Two groups of approaches, namely knowledge-driven and data-driven approaches, have been employed for facial landmarking in the literature. Knowledge-driven techniques are the traditional approaches that have been widely used to locate landmarks on human faces. In these approaches, a user with sucient knowledge and experience usually denes features to be extracted as the landmarks. Data-driven techniques, on the other hand, take advantage of machine learning algorithms to detect prominent features on 3D face models. Besides the key advantages, each category of these techniques has limitations that prevent it from generating the most reliable results. In this work we propose to combine the strengths of the two approaches to detect facial landmarks in a more ecient and precise way. The suggested approach consists of two phases. First, some salient features of the faces are extracted using expert systems. Afterwards, these points are used as the initial control points in the well-known Thin Plate Spline (TPS) technique to deform the input face towards a reference face model. Second, by exploring and utilizing multiple machine learning algorithms another group of landmarks are extracted. The data-driven landmark detection step is performed in a supervised manner providing an information-rich set of training data in which a set of local descriptors are computed and used to train the algorithm. We then, use the detected landmarks for establishing point-to-point correspondence between the 3D human faces mainly using an improved version of Iterative Closest Point (ICP) algorithms. Furthermore, we propose to use the detected landmarks for 3D face matching applications

    Multimodal machine learning for intelligent mobility

    Get PDF
    Scientific problems are solved by finding the optimal solution for a specific task. Some problems can be solved analytically while other problems are solved using data driven methods. The use of digital technologies to improve the transportation of people and goods, which is referred to as intelligent mobility, is one of the principal beneficiaries of data driven solutions. Autonomous vehicles are at the heart of the developments that propel Intelligent Mobility. Due to the high dimensionality and complexities involved in real-world environments, it needs to become commonplace for intelligent mobility to use data-driven solutions. As it is near impossible to program decision making logic for every eventuality manually. While recent developments of data-driven solutions such as deep learning facilitate machines to learn effectively from large datasets, the application of techniques within safety-critical systems such as driverless cars remain scarce.Autonomous vehicles need to be able to make context-driven decisions autonomously in different environments in which they operate. The recent literature on driverless vehicle research is heavily focused only on road or highway environments but have discounted pedestrianized areas and indoor environments. These unstructured environments tend to have more clutter and change rapidly over time. Therefore, for intelligent mobility to make a significant impact on human life, it is vital to extend the application beyond the structured environments. To further advance intelligent mobility, researchers need to take cues from multiple sensor streams, and multiple machine learning algorithms so that decisions can be robust and reliable. Only then will machines indeed be able to operate in unstructured and dynamic environments safely. Towards addressing these limitations, this thesis investigates data driven solutions towards crucial building blocks in intelligent mobility. Specifically, the thesis investigates multimodal sensor data fusion, machine learning, multimodal deep representation learning and its application of intelligent mobility. This work demonstrates that mobile robots can use multimodal machine learning to derive driver policy and therefore make autonomous decisions.To facilitate autonomous decisions necessary to derive safe driving algorithms, we present an algorithm for free space detection and human activity recognition. Driving these decision-making algorithms are specific datasets collected throughout this study. They include the Loughborough London Autonomous Vehicle dataset, and the Loughborough London Human Activity Recognition dataset. The datasets were collected using an autonomous platform design and developed in house as part of this research activity. The proposed framework for Free-Space Detection is based on an active learning paradigm that leverages the relative uncertainty of multimodal sensor data streams (ultrasound and camera). It utilizes an online learning methodology to continuously update the learnt model whenever the vehicle experiences new environments. The proposed Free Space Detection algorithm enables an autonomous vehicle to self-learn, evolve and adapt to new environments never encountered before. The results illustrate that online learning mechanism is superior to one-off training of deep neural networks that require large datasets to generalize to unfamiliar surroundings. The thesis takes the view that human should be at the centre of any technological development related to artificial intelligence. It is imperative within the spectrum of intelligent mobility where an autonomous vehicle should be aware of what humans are doing in its vicinity. Towards improving the robustness of human activity recognition, this thesis proposes a novel algorithm that classifies point-cloud data originated from Light Detection and Ranging sensors. The proposed algorithm leverages multimodality by using the camera data to identify humans and segment the region of interest in point cloud data. The corresponding 3-dimensional data was converted to a Fisher Vector Representation before being classified by a deep Convolutional Neural Network. The proposed algorithm classifies the indoor activities performed by a human subject with an average precision of 90.3%. When compared to an alternative point cloud classifier, PointNet[1], [2], the proposed framework out preformed on all classes. The developed autonomous testbed for data collection and algorithm validation, as well as the multimodal data-driven solutions for driverless cars, is the major contributions of this thesis. It is anticipated that these results and the testbed will have significant implications on the future of intelligent mobility by amplifying the developments of intelligent driverless vehicles.</div

    Multi-Modal 3D Object Detection in Autonomous Driving: a Survey

    Full text link
    In the past few years, we have witnessed rapid development of autonomous driving. However, achieving full autonomy remains a daunting task due to the complex and dynamic driving environment. As a result, self-driving cars are equipped with a suite of sensors to conduct robust and accurate environment perception. As the number and type of sensors keep increasing, combining them for better perception is becoming a natural trend. So far, there has been no indepth review that focuses on multi-sensor fusion based perception. To bridge this gap and motivate future research, this survey devotes to review recent fusion-based 3D detection deep learning models that leverage multiple sensor data sources, especially cameras and LiDARs. In this survey, we first introduce the background of popular sensors for autonomous cars, including their common data representations as well as object detection networks developed for each type of sensor data. Next, we discuss some popular datasets for multi-modal 3D object detection, with a special focus on the sensor data included in each dataset. Then we present in-depth reviews of recent multi-modal 3D detection networks by considering the following three aspects of the fusion: fusion location, fusion data representation, and fusion granularity. After a detailed review, we discuss open challenges and point out possible solutions. We hope that our detailed review can help researchers to embark investigations in the area of multi-modal 3D object detection

    Vision for Scene Understanding

    Get PDF
    This manuscript covers my recent research on vision algorithms for scene understanding, articulated in 3 research axes: 3D Vision, Weakly supervised vision, and Vision and physics. At the core of the most recent works is weakly-supervised learning and physics-embodied vision, which address short comings of supervised learning that requires large amount of data. The use of more physically grounded algorithms appears evidently beneficial as both robots and humans naturally evolve in a 3D physical world. On the other hand, accounting for physics knowledge reflects important cue about lighting and weather conditions of the scene central in my work. Physics-informed machine learning is not only beneficial for increased interpretability but also to compensate labels and data scarcity
    • …
    corecore