639 research outputs found

    Noise-tolerant Modular Neural Network System for Classifying ECG Signal

    Get PDF
    Millions of electrocardiograms (ECG) are interpreted every year, requiring specialized training for accurate interpretation. Because automated and accurate classification ECG signals will improve early diagnosis of heart condition, several neural network (NN) approaches have been proposed for classifying ECG signals. Current strategies for a critical step, the preprocessing for noise removal, are still unsatisfactory. We propose a modular NN approach based on artificial noise injection, to improve the generalization capability of the resulting model. The NN classifier initially performed a fairly accurate recognition of four types of cardiac anomalies in simulated ECG signals with minor, moderate, severe, and extreme noise, with an average accuracy of 99.2%, 95.1%, 91.4%, and 85.2% respectively. Ultimately we discriminated normal and abnormal heartbeat patterns for single lead of raw ECG signals, obtained 95.7% of overall accuracy and 99.5% of Precision. Therefore, the propose approach is a useful tool for the detection and diagnosis of cardiac abnormalities

    Deep learning for surface electromyography artifact contamination type detection

    Get PDF
    The quality of surface Electromyography (sEMG) signals could be an issue if highly contaminated by Power Line Interference (PLI), Electrocardiogram signal (ECG), Movement Artifact (MOA) or White Gaussian Noise (WGN), that could lead to unsafe operation of devices that is controlled by sEMG data, such as electro-mechanical prothesis. There are some mitigation methods proposed for some specifics sEMG contaminants and to use these methods in an efficient way is important to identify the contaminant in the sEMG signal. In this work we propose the use of a Recurrent Neural Network (RNN) using Long Short-Term Memory (LSTM) units in the hidden layer with no need of features extraction with the objective to classify the signal directly from sequences of the band-pass filtered data. The method proposed use the NinaPro database with amputee and non-amputee subjects. Only non-amputee subjects are used for parameters selection and then tested on both databases. The results show that 98% of the non-contaminated sEMG data was corrected classified and more than 95% of the contaminants were identified inside the training SNR range. Also, in this work is presented a SNR sensibility control and the contamination analysis in the range from −40 dB to 40 dB in 10 dB steps. The conclusion is that is possible to classify the contamination type in sEMG signals with a RNN-LSTM with a 112.5 ms time window and to predicted with a small error the classification hit rate for each SNR level in some cases

    A Deep Learning Classifier for Detecting Atrial Fibrillation in Hospital Settings Applicable to Various Sensing Modalities

    Get PDF
    Cardiac signals provide variety of information related to the patient\u27s health. One of the most important is for medical experts to diagnose the functionality of a patient’s heart. This information helps the medical experts monitor heart disease such as atrial fibrillation and heart failure. Atrial fibrillation (AF) is one of the most major diseases that are threatening patients’ health. Medical experts measure cardiac signals usng the Electrocardiogram (ECG or EKG), the Photoplethysmogram (PPG), and more recently the Videoplethysmogram (VPG). Then they can use these measurements to analyze the heart functionality to detect heart diseases. In this study, these three major cardiac signals were used with different classification methodologies such as Basic Thresholding Classifiers (BTC), Machine Learning (SVM) classifiers, and deep learning classifiers based on Convolutional Neural Networks (CNN) to detect AF. To support the work, cardiac signals were acquired from forty-six AF subjects scheduled for cardioversion who were enrolled in a clinical study that was approved by the Internal Review Committees to protect human subjects at the University of Rochester Medical Center (URMC, Rochester, NY), and the Rochester Institute of Technology (RIT, Rochester, NY). The study included synchronized measurements of 5 minutes and 30 seconds of ECG, PPG, VPG 180Hz (High-quality camera), VPG 30 Hz (low quality webcam), taken before and after cardioversion of AF subjects receiving treatment at the AF Clinic of URMC. These data are subjected to BTC, SVM, and CNN classifiers to detect AF and compare the result for each classifier depending on the signal type. We propose a deep learning approach that is applicable to different kinds of cardiac signals to detect AF in a similar manner. By building this technique for different sensors we aim to provide a framework to implement a technique that can be used for most devices, such as, phones, tablets, PCs, ECG devices, and wearable PPG sensors. This conversion of the different sensing platforms provides a single AF detection classifier that can support a complete monitoring cycle that is referring to screen the patient whether at a hospital or home. By using that, the risk factor of heart attack, stroke, or other kind of heart complications can be reduced to a low level to prevent major dangers, since increasing monitoring AF patients helps to predict the disease at an early stage as well as track its progress. We show that the proposed approach provides around 99% accuracy for each type of classifier on the test dataset, thereby helping generalize AF detection by simplifying implementation using a sensor-agnostic deep learning model

    Classification techniques on computerized systems to predict and/or to detect Apnea: A systematic review

    Get PDF
    Sleep apnea syndrome (SAS), which can significantly decrease the quality of life is associated with a major risk factor of health implications such as increased cardiovascular disease, sudden death, depression, irritability, hypertension, and learning difficulties. Thus, it is relevant and timely to present a systematic review describing significant applications in the framework of computational intelligence-based SAS, including its performance, beneficial and challenging effects, and modeling for the decision-making on multiple scenarios.info:eu-repo/semantics/publishedVersio

    A Survey Study of the Current Challenges and Opportunities of Deploying the ECG Biometric Authentication Method in IoT and 5G Environments

    Get PDF
    The environment prototype of the Internet of Things (IoT) has opened the horizon for researchers to utilize such environments in deploying useful new techniques and methods in different fields and areas. The deployment process takes place when numerous IoT devices are utilized in the implementation phase for new techniques and methods. With the wide use of IoT devices in our daily lives in many fields, personal identification is becoming increasingly important for our society. This survey aims to demonstrate various aspects related to the implementation of biometric authentication in healthcare monitoring systems based on acquiring vital ECG signals via designated wearable devices that are compatible with 5G technology. The nature of ECG signals and current ongoing research related to ECG authentication are investigated in this survey along with the factors that may affect the signal acquisition process. In addition, the survey addresses the psycho-physiological factors that pose a challenge to the usage of ECG signals as a biometric trait in biometric authentication systems along with other challenges that must be addressed and resolved in any future related research.

    An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia.</p> <p>Methods</p> <p>In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm.</p> <p>Results</p> <p>A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%.</p> <p>Conclusions</p> <p>The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.</p

    Towards an accurate sleep apnea detection based on ECG signal: The quintessential of a wise feature selection

    Get PDF
    A wise feature selection from minute-to-minute Electrocardiogram (ECG) signal is a challenging task for many reasons, but mostly because of the promise of the accurate detection of clinical disorders, such as the sleep apnea. In this study, the ECG signal was modeled in order to obtain the Heart Rate Variability (HRV) and the ECG-Derived Respiration (EDR). Selected features techniques were used for benchmark with different classifiers such as Artificial Neural Networks (ANN) and Support Vector Machine(SVM), among others. The results evidence that the best accuracy was 82.12%, with a sensitivity and specificity of 88.41% and 72.29%, respectively. In addition, experiments revealed that a wise feature selection may improve the system accuracy. Therefore, the proposed model revealed to be reliable and simpler alternative to classical solutions for the sleep apnea detection, for example the ones based on the Polysomnography.info:eu-repo/semantics/publishedVersio
    • …
    corecore