30 research outputs found

    Study and Implementation of Watermarking Algorithms

    Get PDF
    Water Making is the process of embedding data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. The object may be an audio, image or video. A copy of a digital image is identical to the original. This has in many instances, led to the use of digital content with malicious intent. One way to protect multimedia data against illegal recording and retransmission is to embed a signal, called digital signature or copyright label or watermark that authenticates the owner of the data. Data hiding, schemes to embed secondary data in digital media, have made considerable progress in recent years and attracted attention from both academia and industry. Techniques have been proposed for a variety of applications, including ownership protection, authentication and access control. Imperceptibility, robustness against moderate processing such as compression, and the ability to hide many bits are the basic but rat..

    Compression of DNA sequencing data

    Get PDF
    With the release of the latest generations of sequencing machines, the cost of sequencing a whole human genome has dropped to less than US$1,000. The potential applications in several fields lead to the forecast that the amount of DNA sequencing data will soon surpass the volume of other types of data, such as video data. In this dissertation, we present novel data compression technologies with the aim of enhancing storage, transmission, and processing of DNA sequencing data. The first contribution in this dissertation is a method for the compression of aligned reads, i.e., read-out sequence fragments that have been aligned to a reference sequence. The method improves compression by implicitly assembling local parts of the underlying sequences. Compared to the state of the art, our method achieves the best trade-off between memory usage and compressed size. Our second contribution is a method for the quantization and compression of quality scores, i.e., values that quantify the error probability of each read-out base. Specifically, we propose two Bayesian models that are used to precisely control the quantization. With our method it is possible to compress the data down to 0.15 bit per quality score. Notably, we can recommend a particular parametrization for one of our models which—by removing noise from the data as a side effect—does not lead to any degradation in the distortion metric. This parametrization achieves an average rate of 0.45 bit per quality score. The third contribution is the first implementation of an entropy codec compliant to MPEG-G. We show that, compared to the state of the art, our method achieves the best compression ranks on average, and that adding our method to CRAM would be beneficial both in terms of achievable compression and speed. Finally, we provide an overview of the standardization landscape, and in particular of MPEG-G, in which our contributions have been integrated.Mit der Einführung der neuesten Generationen von Sequenziermaschinen sind die Kosten für die Sequenzierung eines menschlichen Genoms auf weniger als 1.000 US-Dollar gesunken. Es wird prognostiziert, dass die Menge der Sequenzierungsdaten bald diejenige anderer Datentypen, wie z.B. Videodaten, übersteigen wird. Daher werden in dieser Arbeit neue Datenkompressionsverfahren zur Verbesserung der Speicherung, Übertragung und Verarbeitung von Sequenzierungsdaten vorgestellt. Der erste Beitrag in dieser Arbeit ist eine Methode zur Komprimierung von alignierten Reads, d.h. ausgelesenen Sequenzfragmenten, die an eine Referenzsequenz angeglichen wurden. Die Methode verbessert die Komprimierung, indem sie die Reads nutzt, um implizit lokale Teile der zugrunde liegenden Sequenzen zu schätzen. Im Vergleich zum Stand der Technik erzielt die Methode das beste Ergebnis in einer gemeinsamen Betrachtung von Speichernutzung und erzielter Komprimierung. Der zweite Beitrag ist eine Methode zur Quantisierung und Komprimierung von Qualitätswerten, welche die Fehlerwahrscheinlichkeit jeder ausgelesenen Base quantifizieren. Konkret werden zwei Bayes’sche Modelle vorgeschlagen, mit denen die Quantisierung präzise gesteuert werden kann. Mit der vorgeschlagenen Methode können die Daten auf bis zu 0,15 Bit pro Qualitätswert komprimiert werden. Besonders hervorzuheben ist, dass eine bestimmte Parametrisierung für eines der Modelle empfohlen werden kann, die – durch die Entfernung von Rauschen aus den Daten als Nebeneffekt – zu keiner Verschlechterung der Verzerrungsmetrik führt. Mit dieser Parametrisierung wird eine durchschnittliche Rate von 0,45 Bit pro Qualitätswert erreicht. Der dritte Beitrag ist die erste Implementierung eines MPEG-G-konformen Entropie-Codecs. Es wird gezeigt, dass der vorgeschlagene Codec die durchschnittlich besten Kompressionswerte im Vergleich zum Stand der Technik erzielt und dass die Aufnahme des Codecs in CRAM sowohl hinsichtlich der erreichbaren Kompression als auch der Geschwindigkeit von Vorteil wäre. Abschließend wird ein Überblick über Standards zur Komprimierung von Sequenzierungsdaten gegeben. Insbesondere wird hier auf MPEG-G eingangen, da alle Beiträge dieser Arbeit in MPEG-G integriert wurden

    Some Intra-Frame and Inter-Frame Processing Schemes for Efficient Video Compression

    Get PDF
    Rapid increase in digital applications due to recent advances in digital communication and devices needs significant video information storing, processing and transmitting. But the amount of original captured video data is huge and thus makes the system complex in all kind of video processing.But applications demand a faster transmission in different sized electronic devices with good quality.Along with, limited bandwidth and memory for storage makes it challenging. These practical constraints for processing a huge amount of video data, makes video compression as active and challenging field of research. The aim of video compression is to remove redundancy of raw video while maintaining the quality and fidelity. For inter frame processing, motion estimation technique is significantly used to reduce temporal redundancy in almost all the video coding standards e.g. MPEG2, MPEG4, H264/AVC which uses state-of-art algorithm to provide higher compression with a perceptual quality.Though motion estimation is main contributor for higher compression, this is the most computationally complex part of video coding tools. So, it is always a requirement to design an algorithm that is both faster and accurate and provides higher compression but good quality output. The goal of this project is to propose an algorithm for motion estimation which will meet all the requirements and overcome all the practical limitations. In this thesis we analyze the motion of video sequences and some novel block matching based motion estimation algorithms are proposed to improve video coding efficiency in inter frame processing. Particle Swarm Optimization technique and Differential Evolutionary model is used for fast and accurate motion estimation and compensation. Spatial and temporal correlation is adapted for initial population. We followed some strategy for adaptive generations, particle population, particle location history preservation and exploitation. The experimental result shows that our proposed algorithm is efficient to maintain the accuracy. There is significant reduction of search points and thus computational complexity while achieving comparable performance in video coding. Spatial domain redundancy is reduced skipping the irrelevant or spatially co-related data by different sub-sampling algorithm.The sub-sampled intra-frame is up-sampled at the receiver side. The up-sampled high resolution frame requires to have good quality . The existing up-sampling or interpolation techniques produce undesirable blurring and ringing artifacts. To alleviate this problem, a novel spatio-temporal pre-processing approach is proposed to improve the quality. The proposed method use low frequency DCT (Discrete cosine transform) component to sub-sample the frame at the transmitter side. In transmitter side a preprocessing method is proposed where the received subsampled frame is passed through a Wiener filter which uses its local statistics in 3×3 neighborhood to modify pixel values. The output of Wiener filter is added with optimized multiple of high frequency component. The output is then passed through a DCT block to up-sample. Result shows that the proposed method outperforms popularly used interpolation techniques in terms of quality measure

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data
    corecore