2,355 research outputs found

    Joint Ultra-wideband and Signal Strength-based Through-building Tracking for Tactical Operations

    Full text link
    Accurate device free localization (DFL) based on received signal strength (RSS) measurements requires placement of radio transceivers on all sides of the target area. Accuracy degrades dramatically if sensors do not surround the area. However, law enforcement officers sometimes face situations where it is not possible or practical to place sensors on all sides of the target room or building. For example, for an armed subject barricaded in a motel room, police may be able to place sensors in adjacent rooms, but not in front of the room, where the subject would see them. In this paper, we show that using two ultra-wideband (UWB) impulse radios, in addition to multiple RSS sensors, improves the localization accuracy, particularly on the axis where no sensors are placed (which we call the x-axis). We introduce three methods for combining the RSS and UWB data. By using UWB radios together with RSS sensors, it is still possible to localize a person through walls even when the devices are placed only on two sides of the target area. Including the data from the UWB radios can reduce the localization area of uncertainty by more than 60%.Comment: 9 pages, conference submissio

    Device-free Localization using Received Signal Strength Measurements in Radio Frequency Network

    Full text link
    Device-free localization (DFL) based on the received signal strength (RSS) measurements of radio frequency (RF)links is the method using RSS variation due to the presence of the target to localize the target without attaching any device. The majority of DFL methods utilize the fact the link will experience great attenuation when obstructed. Thus that localization accuracy depends on the model which describes the relationship between RSS loss caused by obstruction and the position of the target. The existing models is too rough to explain some phenomenon observed in the experiment measurements. In this paper, we propose a new model based on diffraction theory in which the target is modeled as a cylinder instead of a point mass. The proposed model can will greatly fits the experiment measurements and well explain the cases like link crossing and walking along the link line. Because the measurement model is nonlinear, particle filtering tracing is used to recursively give the approximate Bayesian estimation of the position. The posterior Cramer-Rao lower bound (PCRLB) of proposed tracking method is also derived. The results of field experiments with 8 radio sensors and a monitored area of 3.5m 3.5m show that the tracking error of proposed model is improved by at least 36 percent in the single target case and 25 percent in the two targets case compared to other models.Comment: This paper has been withdrawn by the author due to some mistake

    Dial It In: Rotating RF Sensors to Enhance Radio Tomography

    Full text link
    A radio tomographic imaging (RTI) system uses the received signal strength (RSS) measured by RF sensors in a static wireless network to localize people in the deployment area, without having them to carry or wear an electronic device. This paper addresses the fact that small-scale changes in the position and orientation of the antenna of each RF sensor can dramatically affect imaging and localization performance of an RTI system. However, the best placement for a sensor is unknown at the time of deployment. Improving performance in a deployed RTI system requires the deployer to iteratively "guess-and-retest", i.e., pick a sensor to move and then re-run a calibration experiment to determine if the localization performance had improved or degraded. We present an RTI system of servo-nodes, RF sensors equipped with servo motors which autonomously "dial it in", i.e., change position and orientation to optimize the RSS on links of the network. By doing so, the localization accuracy of the RTI system is quickly improved, without requiring any calibration experiment from the deployer. Experiments conducted in three indoor environments demonstrate that the servo-nodes system reduces localization error on average by 32% compared to a standard RTI system composed of static RF sensors.Comment: 9 page

    Doctor of Philosophy

    Get PDF
    dissertationLocation information of people is valuable for many applications including logistics, healthcare, security and smart facilities. This dissertation focuses on localization of people in wireless sensor networks using radio frequency (RF) signals, speci cally received signal strength (RSS) measurements. A static sensor network can make RSS measurements of the signal from a transmitting badge that a person wears in order to locate the badge. We call this kind of localization method radio device localization. Since the human body causes RSS changes between pairwise sensor nodes of a static network, we can also use RSS measurements from pairwise nodes of a network to locate people, even if they are not carrying any radio device. We call this device-free localization (DFL). The rst contribution of this dissertation is to radio device localization. The human body has a major e ect on the antenna gain pattern of the transmitting badge that the person is wearing, however, existing r

    Breathfinding: A Wireless Network that Monitors and Locates Breathing in a Home

    Full text link
    This paper explores using RSS measurements on many links in a wireless network to estimate the breathing rate of a person, and the location where the breathing is occurring, in a home, while the person is sitting, laying down, standing, or sleeping. The main challenge in breathing rate estimation is that "motion interference", i.e., movements other than a person's breathing, generally cause larger changes in RSS than inhalation and exhalation. We develop a method to estimate breathing rate despite motion interference, and demonstrate its performance during multiple short (3-7 minute) tests and during a longer 66 minute test. Further, for the same experiments, we show the location of the breathing person can be estimated, to within about 2 m average error in a 56 square meter apartment. Being able to locate a breathing person who is not otherwise moving, without calibration, is important for applications in search and rescue, health care, and security
    • …
    corecore