5,730 research outputs found

    Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies

    Get PDF
    CMOS evolution introduces several problems in analog design. Gate-leakage mismatch exceeds conventional matching tolerances requiring active cancellation techniques or alternative architectures. One strategy to deal with the use of lower supply voltages is to operate critical parts at higher supply voltages, by exploiting combinations of thin- and thick-oxide transistors. Alternatively, low voltage circuit techniques are successfully developed. In order to benefit from nanometer scale CMOS technology, more functionality is shifted to the digital domain, including parts of the RF circuits. At the same time, analog control for digital and digital control for analog emerges to deal with current and upcoming imperfections

    Analysis of Crosstalk Noise for 2π RC Model considering Interconnect Parameters in Deep Submicron VLSI Circuit

    Get PDF
    As the technology enters into deep sub-micron region, signal integrity is becoming a very crucial parameter. In order to deal with the challenges associated with signal integrity problem, such as, crosstalk noise and delay, estimation and minimizing techniques should be addressed with great importance. Along with this, the peak noise amplitude and noise width values in the sensitive node must be verified and confirmed that they are below the certain threshold levels. Hence, for a particular range of frequency, an accurate and efficient crosstalk noise estimation model is necessary to confirm the signal integrity. Therefore, this work aims to analyse the crosstalk noise between two interconnect lines using 2π RC model, and considering its physical parameters, such as the parasitic capacitance, resistance and inductance and interconnect parameters, specifically the spacing between two interconnects, length, width, thickness, height from substrate in deep sub-micron VLSI circuit. In this paper, analytical expressions for peak noise amplitude and noise width in 2π model with RC interconnects for unit step input were derived, and then it was simulated in MATLAB and HSPICE software platform. The MATLAB based results represent that 2π model possesses less errors, and showed better performance compared to some other popular models by adjusting the interconnecting parameters for any certain range of operating frequency. The HSPICE simulation justifies the accuracy of the approach with full satisfaction

    Analog Circuits in Ultra-Deep-Submicron CMOS

    Get PDF
    Modern and future ultra-deep-submicron (UDSM) technologies introduce several new problems in analog design. Nonlinear output conductance in combination with reduced voltage gain pose limits in linearity of (feedback) circuits. Gate-leakage mismatch exceeds conventional matching tolerances. Increasing area does not improve matching any more, except if higher power consumption is accepted or if active cancellation techniques are used. Another issue is the drop in supply voltages. Operating critical parts at higher supply voltages by exploiting combinations of thin- and thick-oxide transistors can solve this problem. Composite transistors are presented to solve this problem in a practical way. Practical rules of thumb based on measurements are derived for the above phenomena

    Supply Current Modeling and Analysis of Deep Sub-Micron Cmos Circuits

    Get PDF
    Continued technology scaling has introduced many new challenges in VLSI design. Instantaneous switching of the gates yields high current flow through them that causes large voltage drop at the supply lines. Such high instantaneous currents and voltage drop cause reliability and performance degradation. Reliability is an issue as high magnitude of current can cause electromigration, whereas, voltage drop can slow down the circuit performance. Therefore, designing power supply lines emphasizes the need of computing maximum current through them. However, the development of digital integrated circuits in short design cycle requires accurate and fast timing and power simulation. Unfortunately, simulators that employ device modeling methods, such as HSPICE are prohibitively slow for large designs. Therefore, methods which can produce good maximum current estimates in short times are critical. In this work a compact model has been developed for maximum current estimation that speeds up the computation by orders of magnitude over the commercial tools

    An Electromigration and Thermal Model of Power Wires for a Priori High-Level Reliability Prediction

    Get PDF
    In this paper, a simple power-distribution electrothermal model including the interconnect self-heating is used together with a statistical model of average and rms currents of functional blocks and a high-level model of fanout distribution and interconnect wirelength. Following the 2001 SIA roadmap projections, we are able to predict a priori that the minimum width that satisfies the electromigration constraints does not scale like the minimum metal pitch in future technology nodes. As a consequence, the percentage of chip area covered by power lines is expected to increase at the expense of wiring resources unless proper countermeasures are taken. Some possible solutions are proposed in the paper

    Extending systems-on-chip to the third dimension : performance, cost and technological tradeoffs.

    Get PDF
    Because of the today's market demand for high-performance, high-density portable hand-held applications, electronic system design technology has shifted the focus from 2-D planar SoC single-chip solutions to different alternative options as tiled silicon and single-level embedded modules as well as 3-D integration. Among the various choices, finding an optimal solution for system implementation dealt usually with cost, performance and other technological trade-off analysis at the system conceptual level. It has been identified that the decisions made within the first 20% of the total design cycle time will ultimately result up to 80% of the final product cost. In this paper, we discuss appropriate and realistic metric for performance and cost trade-off analysis both at system conceptual level (up-front in the design phase) and at implementation phase for verification in the three-dimensional integration. In order to validate the methodology, two ubiquitous electronic systems are analyzed under various implementation schemes and discuss the pros and cons of each of them

    A general weak nonlinearity model for LNAs

    Get PDF
    This paper presents a general weak nonlinearity model that can be used to model, analyze and describe the distortion behavior of various low noise amplifier topologies in both narrowband and wideband applications. Represented by compact closed-form expressions our model can be easily utilized by both circuit designers and LNA design automation algorithms.\ud Simulations for three LNA topologies at different operating conditions show that the model describes IM components with an error lower than 0.1% and a one order of magnitude faster response time. The model also indicates that for narrowband IM2@w1-w2 all the nonlinear capacitances can be neglected while for narrowband IM3 the nonlinear capacitances at the drainterminal can be neglected

    A global wire planning scheme for Network-on-Chip.

    Get PDF
    As technology scales down, the interconnect for on-chip global communication becomes the delay bottleneck. In order to provide well-controlled global wire delay and efficient global communication, a packet switched Network-on-Chip (NoC) architecture was proposed by different authors. In this paper, the NoC system parameters constrained by the interconnections are studied. Predictions on scaled system parameters such as clock frequency, resource size, global communication bandwidth and inter-resource delay are made for future technologies. Based on these parameters, a global wire planning scheme is proposed
    corecore