9,674 research outputs found

    Illumination coding meets uncertainty learning: toward reliable AI-augmented phase imaging

    Full text link
    We propose a physics-assisted deep learning (DL) framework for large space-bandwidth product (SBP) phase imaging. We design an asymmetric coded illumination scheme to encode high-resolution phase information across a wide field-of-view. We then develop a matching DL algorithm to provide large-SBP phase estimation. We show that this illumination coding scheme is highly scalable in achieving flexible resolution, and robust to experimental variations. We demonstrate this technique on both static and dynamic biological samples, and show that it can reliably achieve 5X resolution enhancement across 4X FOVs using only five multiplexed measurements -- more than 10X data reduction over the state-of-the-art. Typical DL algorithms tend to provide over-confident predictions, whose errors are only discovered in hindsight. We develop an uncertainty learning framework to overcome this limitation and provide predictive assessment to the reliability of the DL prediction. We show that the predicted uncertainty maps can be used as a surrogate to the true error. We validate the robustness of our technique by analyzing the model uncertainty. We quantify the effect of noise, model errors, incomplete training data, and "out-of-distribution" testing data by assessing the data uncertainty. We further demonstrate that the predicted credibility maps allow identifying spatially and temporally rare biological events. Our technique enables scalable AI-augmented large-SBP phase imaging with dependable predictions.Published versio

    Seconds-scale coherence in a tweezer-array optical clock

    Get PDF
    Optical clocks based on atoms and ions achieve exceptional precision and accuracy, with applications to relativistic geodesy, tests of relativity, and searches for dark matter. Achieving such performance requires balancing competing desirable features, including a high particle number, isolation of atoms from collisions, insensitivity to motional effects, and high duty-cycle operation. Here we demonstrate a new platform based on arrays of ultracold strontium atoms confined within optical tweezers that realizes a novel combination of these features by providing a scalable platform for isolated atoms that can be interrogated multiple times. With this tweezer-array clock, we achieve greater than 3 second coherence times and record duty cycles up to 96%, as well as stability commensurate with leading platforms. By using optical tweezer arrays --- a proven platform for the controlled creation of entanglement through microscopic control --- this work further promises a new path toward combining entanglement enhanced sensitivities with the most precise optical clock transitions
    • …
    corecore