13,482 research outputs found

    A design concept for radiation hardened RADFET readout system for space applications

    Get PDF
    Instruments for measuring the absorbed dose and dose rate under radiation exposure, known as radiation dosimeters, are indispensable in space missions. They are composed of radiation sensors that generate current or voltage response when exposed to ionizing radiation, and processing electronics for computing the absorbed dose and dose rate. Among a wide range of existing radiation sensors, the Radiation Sensitive Field Effect Transistors (RADFETs) have unique advantages for absorbed dose measurement, and a proven record of successful exploitation in space missions. It has been shown that the RADFETs may be also used for the dose rate monitoring. In that regard, we propose a unique design concept that supports the simultaneous operation of a single RADFET as absorbed dose and dose rate monitor. This enables to reduce the cost of implementation, since the need for other types of radiation sensors can be minimized or eliminated. For processing the RADFET's response we propose a readout system composed of analog signal conditioner (ASC) and a self-adaptive multiprocessing system-on-chip (MPSoC). The soft error rate of MPSoC is monitored in real time with embedded sensors, allowing the autonomous switching between three operating modes (high-performance, de-stress and fault-tolerant), according to the application requirements and radiation conditions

    Radiation effects studies for the high-resolution spectrograph

    Get PDF
    The generation and collection of charge carriers created during the passage of energetic protons through a silicon photodiode array are modeled. Pulse height distributions of noise charge collected during exposure of a digicon type diode array to 21 and 75 MeV protons were obtained. The magnitude of charge collected by a diode from each proton event is determined not only by diffusion, but by statistical considerations involving the ionization process itself. Utilizing analytical solutions to the diffusion equation for transport of minority carriers, together with the Vavilov theory of energy loss fluctuations in thin absorbers, simulations of the pulse height spectra which follow the experimental distributions fairly well are presented and an estimate for the minority carrier diffusion length L sub d is provided

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Methods of visualisation

    Get PDF

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c

    Study of Single-Event Transient Effects on Analog Circuits

    Get PDF
    Radiation in space is potentially hazardous to microelectronic circuits and systems such as spacecraft electronics. Transient effects on circuits and systems from high energetic particles can interrupt electronics operation or crash the systems. This phenomenon is particularly serious in complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) since most of modern ICs are implemented with CMOS technologies. The problem is getting worse with the technology scaling down. Radiation-hardening-by-design (RHBD) is a popular method to build CMOS devices and systems meeting performance criteria in radiation environment. Single-event transient (SET) effects in digital circuits have been studied extensively in the radiation effect community. In recent years analog RHBD has been received increasing attention since analog circuits start showing the vulnerability to the SETs due to the dramatic process scaling. Analog RHBD is still in the research stage. This study is to further study the effects of SET on analog CMOS circuits and introduces cost-effective RHBD approaches to mitigate these effects. The analog circuits concerned in this study include operational amplifiers (op amps), comparators, voltage-controlled oscillators (VCOs), and phase-locked loops (PLLs). Op amp is used to study SET effects on signal amplitude while the comparator, the VCO, and the PLL are used to study SET effects on signal state during transition time. In this work, approaches based on multi-level from transistor, circuit, to system are presented to mitigate the SET effects on the aforementioned circuits. Specifically, RHBD approach based on the circuit level, such as the op amp, adapts the auto-zeroing cancellation technique. The RHBD comparator implemented with dual-well and triple-well is studied and compared at the transistor level. SET effects are mitigated in a LC-tank oscillator by inserting a decoupling resistor. The RHBD PLL is implemented on the system level using triple modular redundancy (TMR) approach. It demonstrates that RHBD at multi-level can be cost-effective to mitigate the SEEs in analog circuits. In addition, SETs detection approaches are provided in this dissertation so that various mitigation approaches can be implemented more effectively. Performances and effectiveness of the proposed RHBD are validated through SPICE simulations on the schematic and pulsed-laser experiments on the fabricated circuits. The proposed and tested RHBD techniques can be applied to other relevant analog circuits in the industry to achieve radiation-tolerance

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
    corecore