143 research outputs found

    A Survey Study of the Current Challenges and Opportunities of Deploying the ECG Biometric Authentication Method in IoT and 5G Environments

    Get PDF
    The environment prototype of the Internet of Things (IoT) has opened the horizon for researchers to utilize such environments in deploying useful new techniques and methods in different fields and areas. The deployment process takes place when numerous IoT devices are utilized in the implementation phase for new techniques and methods. With the wide use of IoT devices in our daily lives in many fields, personal identification is becoming increasingly important for our society. This survey aims to demonstrate various aspects related to the implementation of biometric authentication in healthcare monitoring systems based on acquiring vital ECG signals via designated wearable devices that are compatible with 5G technology. The nature of ECG signals and current ongoing research related to ECG authentication are investigated in this survey along with the factors that may affect the signal acquisition process. In addition, the survey addresses the psycho-physiological factors that pose a challenge to the usage of ECG signals as a biometric trait in biometric authentication systems along with other challenges that must be addressed and resolved in any future related research.

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    IoT-blockchain empowered Trinet: optimized fall detection system for elderly safety

    Get PDF
    Numerous elderly folks reside alone in their homes. Seniors may find it difficult to ask for assistance if they fall. As the elderly population keeps growing, elderly fall incidents are becoming a critical public health concern. Creating a fall detection system for the elderly using IoT and blockchain is the aim of this study. Data collection, pre-processing, feature extraction, feature selection, fall detection, and emergency response and assistance are the six fundamental aspects of the proposed model. The sensor data is collected from wearable devices using elderly such as accelerometers and gyroscopes. The collected data is pre-processed using missing value removal, null value handling. The features are extracted after pre-processed data using statistical features, autocorrelation, and Principal Component Analysis The proposed approach utilizes a novel hybrid HSSTL combines Teaching-Learning-Based Optimization and Spring Search Algorithm to select the optimal features. The proposed approach employs TriNet, including Long Short-Term Memory, optimized Convolutional Neural Network (CNN), and Recurrent Neural Network for accurate fall detection. To enhance fall detection accuracy, use the optimized Convolutional Neural Network obtained through the hybrid optimization model HSSTL. Securely store fall detection information in the Blockchain network when a fall occurs. Alert neighbours, family members, or those providing immediate assistance about the fall occurrence using Blockchain network. The proposed model is implemented in Python. The effectiveness of the suggested model is evaluated using metrics for accuracy, precision, recall, sensitivity, specificity, f-measure, NPV, FPR, FNR, and MCC. The proposed model outperformed with the maximum accuracy of 0.974015 at an 80% learning rate, whereas the suggested model had the best accuracy score of 0.955679 at a 70% learning rate

    IoT-blockchain empowered Trinet: optimized fall detection system for elderly safety

    Get PDF
    Numerous elderly folks reside alone in their homes. Seniors may find it difficult to ask for assistance if they fall. As the elderly population keeps growing, elderly fall incidents are becoming a critical public health concern. Creating a fall detection system for the elderly using IoT and blockchain is the aim of this study. Data collection, pre-processing, feature extraction, feature selection, fall detection, and emergency response and assistance are the six fundamental aspects of the proposed model. The sensor data is collected from wearable devices using elderly such as accelerometers and gyroscopes. The collected data is pre-processed using missing value removal, null value handling. The features are extracted after pre-processed data using statistical features, autocorrelation, and Principal Component Analysis The proposed approach utilizes a novel hybrid HSSTL combines Teaching-Learning-Based Optimization and Spring Search Algorithm to select the optimal features. The proposed approach employs TriNet, including Long Short-Term Memory, optimized Convolutional Neural Network (CNN), and Recurrent Neural Network for accurate fall detection. To enhance fall detection accuracy, use the optimized Convolutional Neural Network obtained through the hybrid optimization model HSSTL. Securely store fall detection information in the Blockchain network when a fall occurs. Alert neighbours, family members, or those providing immediate assistance about the fall occurrence using Blockchain network. The proposed model is implemented in Python. The effectiveness of the suggested model is evaluated using metrics for accuracy, precision, recall, sensitivity, specificity, f-measure, NPV, FPR, FNR, and MCC. The proposed model outperformed with the maximum accuracy of 0.974015 at an 80% learning rate, whereas the suggested model had the best accuracy score of 0.955679 at a 70% learning rate

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    Acoustic sensing as a novel approach for cardiovascular monitoring at the wrist

    Get PDF
    Cardiovascular diseases are the number one cause of deaths globally. An increased cardiovascular risk can be detected by a regular monitoring of the vital signs including the heart rate, the heart rate variability (HRV) and the blood pressure. For a user to undergo continuous vital sign monitoring, wearable systems prove to be very useful as the device can be integrated into the user's lifestyle without affecting the daily activities. However, the main challenge associated with the monitoring of these cardiovascular parameters is the requirement of different sensing mechanisms at different measurement sites. There is not a single wearable device that can provide sufficient physiological information to track the vital signs from a single site on the body. This thesis proposes a novel concept of using acoustic sensing over the radial artery to extract cardiac parameters for vital sign monitoring. A wearable system consisting of a microphone is designed to allow the detection of the heart sounds together with the pulse wave, an attribute not possible with existing wrist-based sensing methods. Methods: The acoustic signals recorded from the radial artery are a continuous reflection of the instantaneous cardiac activity. These signals are studied and characterised using different algorithms to extract cardiovascular parameters. The validity of the proposed principle is firstly demonstrated using a novel algorithm to extract the heart rate from these signals. The algorithm utilises the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic recordings is found by extracting the S1 events using the relative information between the short- and long-term energies of the signal. The S1 events are localised using three different characteristic points and the best representation is found by comparing the instantaneous heart rate profiles. The possibility of measuring the blood pressure using the wearable device is shown by recording the acoustic signal under the influence of external pressure applied on the arterial branch. The temporal and spectral characteristics of the acoustic signal are utilised to extract the feature signals and obtain a relationship with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Results: This thesis proposes three different algorithms to find the heart rate, the HRV and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results obtained by each algorithm are as follows: 1. The heart rate algorithm is validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. A high statistical agreement between the heart rate obtained from the acoustic signal and the photoplethysmography (PPG) signal is observed. 2. The HRV algorithm is validated on the short-term acoustic signals of 5-minutes duration recorded from each of the 12 subjects. A comparison is established with the simultaneously recorded electrocardiography (ECG) and PPG signals respectively. The instantaneous heart rate for all the subjects combined together achieves an accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respectively. The results for the time-domain and frequency-domain HRV parameters also demonstrate high statistical agreement with the ECG and PPG signals respectively. 3. The algorithm proposed for the SBP/ DBP determination is validated on 104 acoustic signals recorded from 40 adult subjects. The experimental outputs when compared with the reference arm- and wrist-based monitors produce a mean error of less than 2 mmHg and a standard deviation of error around 6 mmHg. Based on these results, this thesis shows the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for the continuous monitoring of heart rate and HRV, and spot measurement of the blood pressure at the wrist.Open Acces

    Multiclass Classifier based Cardiovascular Condition Detection Using Smartphone Mechanocardiography

    Get PDF
    Cardiac translational and rotational vibrations induced by left ventricular motions are measurable using joint seismocardiography (SCG) and gyrocardiography (GCG) techniques. Multi-dimensional non-invasive monitoring of the heart reveals relative information of cardiac wall motion. A single inertial measurement unit (IMU) allows capturing cardiac vibrations in sufficient details and enables us to perform patient screening for various heart conditions. We envision smartphone mechanocardiography (MCG) for the use of e-health or telemonitoring, which uses a multi-class classifier to detect various types of cardiovascular diseases (CVD) using only smartphone’s built-in internal sensors data. Such smartphone App/solution could be used by either a healthcare professional and/or the patient him/herself to take recordings from their heart. We suggest that smartphone could be used to separate heart conditions such as normal sinus rhythm (SR), atrial fibrillation (AFib), coronary artery disease (CAD), and possibly ST-segment elevated myocardial infarction (STEMI) in multiclass settings. An application could run the disease screening and immediately inform the user about the results. Widespread availability of IMUs within smartphones could enable the screening of patients globally in the future, however, we also discuss the possible challenges raised by the utilization of such self-monitoring systems.</p

    Plateforme informatique pour l'assistance à l'autonomie à domicile de personnes âgées

    Get PDF
    RÉSUMÉ : Ambient Assisted Living (AAL) en général et Activity Recognition (AR) en particulier sont des domaines de recherche actifs qui visent à aider les personnes dans leurs activités de la vie quotidienne (AVQ). Au cours des dernières années, nous avons constaté un intérêt accru pour leur applicabilité aux personnes âgées vivant en milieu rural qui perdent lentement leur autonomie en raison du vieillissement et aux maladies chroniques. Une avenue de recherche importante consiste à agréger et à rechercher des corrélations entre les données physiologiques qui servent à surveiller la santé des personnes âgées, leurs AVQ, leurs mouvements et toute autre donnée pouvant être recueillis sur leur environnement immédiat. Dans ce travail, nous abordons la possibilité de développer une plateforme non intrusive et abordable en raison de l'absence d'une telle plateforme. Elle est basée sur des capteurs de santé, de mouvement, d'activité et de localisation. En outre, nous discutons des principaux concepts derrière la création d'une architecture en couches, flexible et hautement modulaire qui se concentre sur la façon dont l'intégration de données de capteurs combinés peut être réalisée. À l'aide d'un prototype d'application de téléphonie mobile, nos travaux ont montré que nous pouvons intégrer de nombreuses technologies non invasives qui ne sont pas nécessairement les plus récentes, mais les plus abordables, évolutives et prêtes à être déployées dans des environnements réels. Un autre domaine de recherche découlant de ces avancées est de savoir comment la technologie et l'analyse pourraient bénéficier à la prévention et au traitement des maladies chroniques chez le nombre croissant de personnes âgées ayant des problèmes de santé. De nombreuses architectures sont proposées dans la littérature, mais elles manquent de modularité et de flexibilité pour différents types de capteurs. À cette fin, nous proposons une architecture à quatre couches et hautement modulaire pour l'analyse de la santé des personnes âgées. Finalement, nous évaluons l'approche en implémentant une partie de l'architecture sur des nœuds de brouillard et le cloud. De plus, nous déployons ces capteurs abordables, de qualité, et accessibles au grand public dans un appartement afin d'avancer vers l'utilisation du système proposé. Des données recueillies sont utilisées comme un test préliminaire pour évaluer les capacités de la plate-forme. En utilisant les données collectées lors de l'étape de validation, nous effectuons des prévisions d'une semaine dans le futur pour des séries univariées en utilisant des méthodes classiques populaires et les méthodes d'apprentissage en profondeur les plus récentes. Une comparaison de précision est présentée. -- Mot(s) clé(s) en français : IoT, suivi à distance des personnes âgées, santé intelligente et connectée, analyse, assistance à la vie ambiante, capteurs, intelligence artificielle. -- ABSTRACT : Ambient Assisted Living (AAL) in general and Activity Recognition (AR) in particular are active fields of research that aim at assisting people in their Activities of Daily Living (ADL). In recent years, we have seen an increased interest in their applicability to the rural seniors who are slowly losing their autonomy due to aging and chronic diseases. One research venue is to aggregate and seek for correlations between the physiological data that serves to monitor the health of the elderly, their ADLs, their movements and any other data that may be collected about their immediate environment. In this work, we are tackling the possibility of developing a non-intrusive and affordable platform due to the lack of such a platform. It is based on embedded health, movement, activity and location sensors. Furthermore, we discuss the main concepts behind the creation of a layered, flexible and highly modular architecture that focuses on how the integration of newly combined sensor data can be achieved. Using a mobile phone application prototype, our work has shown that we can integrate many non-invasive technologies that are not necessarily the newest, but the most affordable, scalable and ready to be deployed in real life settings. Another researched venue deriving from these advances is how the technology and analytics could benefit the prevention and treatment of chronic diseases in the escalating number of elderly people experiencing health issues. Many architectures are proposed in the literature, but they lack modularity and flexibility for different types of sensors. To that end, we propose a four layered and highly modular architecture for health analytics of elderly people. In the final analysis, we evaluate the approach by implementing part of the architecture on fog nodes and the cloud. Moreover, we deploy these affordable consumer grade sensors in an apartment in order to move toward the use of the system proposed. The data collected from this experiment is used as a preliminary test of the capabilities of the platform. We perform univariate series forecasting using a popular classical methods and the more recent deep learning methods by using the data collected in the validation stage. An accuracy comparison is presented. -- Mot(s) clé(s) en anglais : IoT, remote elderly monitoring, smart and connected Health, analytics, ambient assisted living, sensors

    Tracking of Human Motion over Time

    Get PDF
    • …
    corecore