175 research outputs found

    Breast Density Estimation and Micro-Calcification Classification

    Get PDF

    Enhanced Digital Breast Tomosynthesis diagnosis using 3D visualization and automatic classification of lesions

    Get PDF
    Breast cancer represents the main cause of cancer-related deaths in women. Nonetheless, the mortality rate of this disease has been decreasing over the last three decades, largely due to the screening programs for early detection. For many years, both screening and clinical diagnosis were mostly done through Digital Mammography (DM). Approved in 2011, Digital Breast Tomosynthesis (DBT) is similar to DM but it allows a 3D reconstruction of the breast tissue, which helps the diagnosis by reducing the tissue overlap. Currently, DBT is firmly established and is approved as a stand-alone modality to replace DM. The main objective of this thesis is to develop computational tools to improve the visualization and interpretation of DBT data. Several methods for an enhanced visualization of DBT data through volume rendering were studied and developed. Firstly, important rendering parameters were considered. A new approach for automatic generation of transfer functions was implemented and two other parameters that highly affect the quality of volume rendered images were explored: voxel size in Z direction and sampling distance. Next, new image processing methods that improve the rendering quality by considering the noise regularization and the reduction of out-of-plane artifacts were developed. The interpretation of DBT data with automatic detection of lesions was approached through artificial intelligence methods. Several deep learning Convolutional Neural Networks (CNNs) were implemented and trained to classify a complete DBT image for the presence or absence of microcalcification clusters (MCs). Then, a faster R-CNN (region-based CNN) was trained to detect and accurately locate the MCs in the DBT images. The detected MCs were rendered with the developed 3D rendering software, which provided an enhanced visualization of the volume of interest. The combination of volume visualization with lesion detection may, in the future, improve both diagnostic accuracy and also reduce analysis time. This thesis promotes the development of new computational imaging methods to increase the diagnostic value of DBT, with the aim of assisting radiologists in their task of analyzing DBT volumes and diagnosing breast cancer

    Deep Learning for computer-aided detection and diagnosis of clustered microcalcifications on digital mammograms

    Get PDF

    The impact of simulated motion blur on breast cancer detection performance in full field digital mammography (FFDM)

    Get PDF
    Objective: Full-field Digital Mammography (FFDM) is employed in breast screening for the early detection of breast cancer. High quality, artefact free, diagnostic images are crucial to the accuracy of this process. Unwanted motion during the image acquisition phase and subsequent image blurring is an unfortunate occurrence in some FFDM images. The research detailed in this thesis seeks to understand the impact of motion blur on cancer detection performance in FFDM images using novel software to perform simulation of motion, an observer study to measure the lesion detection performance and physical measures to assess the impact of simulated motion blur on image characteristics of the lesions. Method: Seven observers (15±5 years’ reporting experience) evaluated 248 cases (62 containing malignant masses, 62 containing malignant microcalcifications and 124 normal cases) for three conditions: no motion blur (0.0 mm) and two magnitudes of simulated motion blur (0.7 mm and 1.5 mm). Abnormal cases were biopsy proven. A free-response observer study was conducted to compare lesion detection performance for the three conditions. Equally weighted jackknife alternative free-response receiver operating characteristic (wJAFROC) was used as the figure of merit. A secondary analysis of data was deemed important to simulate ‘double reporting’. In this secondary analysis, six of the observers are combined with the seventh observer to evaluate the impact of combined free-response data for lesion detection and to assess if combined two observers data could reduce the impact of simulated motion blur on detection performance. To compliment this, the physical characteristics of the lesions were obtained under the three conditions in order to assess any change in characteristics of the lesions when blur is present in the image. The impact of simulated motion blur on physical characteristics of malignant masses was assessed using a conspicuity index; for microcalcifications, a new novel metric, known as dispersion index, was used. Results: wJAFROC analysis found a statistically significant difference in lesion detection performance for both masses (F (2,22) = 6.01, P=0.0084) and microcalcifications (F(2,49) = 23.14, P<0.0001). For both lesion types, the figure of merit reduced as the magnitude of simulated motion blur increased. Statistical differences were found between some of the pairs investigated for the detection of masses (0.0mm v 0.7mm, and 0.0mm v 1.5mm) and all pairs for microcalcifications (0.0 mm v 0.7 mm, 0.0 mm v 1.5 mm, and 0.7 mm v 1.5 mm). No difference was detected between 0.7 mm and 1.5 mm for masses. For combined two observers’ data of masses, there was no statistically significant difference between single and combined free-response data for masses (F(1,6) = 4.04, p=0.1001, -0.031 (-0.070, 0.008) [treatment difference (95% CI)]. For combined data of microcalcifications, there was a statistically significant difference between single and combined free-response data (F(1,6) = 12.28, p=0.0122, -0.056 (-0.095, -0.017) [treatment difference (95% CI)]. Regarding the physical measures of masses, conspicuity index increases as the magnitude of simulated motion blur increases. Statistically significant differences were demonstrated for 0.0–0.7 mm t(22)=-6.158 (p<0.000); 0.0–1.5 mm t(22)=-6.273 (p<0.000); and 0.7–1.5 mm (t(22)=-6.231 (p<0.000). Lesion edge angle decreases as the magnitude of simulated motion blur increases. Statistically significant differences were demonstrated for 0.0–0.7 mm t(22)=3.232 (p<0.004); for 0.0–1.5 mm t(22)=6.592 (p<0.000); and 0.7–1.5mm t(22)=2.234 (p<0.036). For the grey level change there was no statistically significant difference as simulated motion blur increases to 0.7 and then to 1.5mm. For image noise there was a statistically significant difference, where noise reduced as simulated motion blur increased: 0.0–0.7 mm t(22)=22.95 (p<0.000); 0.0–1.5mm t(22)=24.66 (p<0.000); 0.7–1.5 mm t(22)=18.11 (p<0.000). For microcalcifications, simulated motion blur had a negative impact on the ‘dispersion index’. Conclusion: Mathematical simulations of motion blur resulted in a statistically significant reduction in lesion detection performance. This reduction in performance could have implications for clinical practice. Simulated motion blur has a negative impact on the edge angle of breast masses and a negative impact on the image characteristics of microcalcifications. These changes in the image lesion characteristics appear to have a negative effect on the visual identification of breast cancer
    • …
    corecore