3,085 research outputs found

    A comprehensive radial velocity error budget for next generation Doppler spectrometers

    Full text link
    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.Comment: 20 pages, 12 figures, published in Proc. of SPIE Astronomical Telescopes + Instrumentation 201

    Review of subjective measures of human response to aircraft noise

    Get PDF
    The development of aircraft noise rating scales and indexes is reviewed up to the present time. Single event scales, multiple event indexes, and their interrelation with each other, are considered. Research requirements for further refinement and development of aircraft noise rating quantification factors are discussed

    PSFs of coadded images

    Full text link
    We provide a detailed exploration of the connection between choice of coaddition schemes and the point-spread function (PSF) of the resulting coadded images. In particular, we investigate what properties of the coaddition algorithm lead to the final coadded image having a well-defined PSF. The key elements of this discussion are as follows: 1. We provide an illustration of how linear coaddition schemes can produce a coadd that lacks a well-defined PSF even for relatively simple scenarios and choices of weight functions. 2. We provide a more formal demonstration of the fact that a linear coadd only has a well-defined PSF in the case that either (a) each input image has the same PSF or (b) the coadd is produced with weights that are independent of the signal. 3. We discuss some reasons that two plausible nonlinear coaddition algorithms (median and clipped-mean) fail to produce a consistent PSF profile for stars. 4. We demonstrate that all nonlinear coaddition procedures fail to produce a well-defined PSF for extended objects. In the end, we conclude that, for any purpose where a well-defined PSF is desired, one should use a linear coaddition scheme with weights that do not correlate with the signal and are approximately uniform across typical objects of interest.Comment: 13 pages, 4 figures; pedagogical article for submission to the Open Journal of Astrophysic

    A Catalog of Cool Dwarf Targets for the Transiting Exoplanet Survey Satellite

    Get PDF
    We present a catalog of cool dwarf targets (VJ>2.7V-J>2.7, Teff4000KT_{\rm eff} \lesssim 4000 K) and their stellar properties for the upcoming Transiting Exoplanet Survey Satellite (TESS), for the purpose of determining which cool dwarfs should be observed using two-minute observations. TESS has the opportunity to search tens of thousands of nearby, cool, late K and M-type dwarfs for transiting exoplanets, an order of magnitude more than current or previous transiting exoplanet surveys, such as {\it Kepler}, K2 and ground-based programs. This necessitates a new approach to choosing cool dwarf targets. Cool dwarfs were chosen by collating parallax and proper motion catalogs from the literature and subjecting them to a variety of selection criteria. We calculate stellar parameters and TESS magnitudes using the best possible relations from the literature while maintaining uniformity of methods for the sake of reproducibility. We estimate the expected planet yield from TESS observations using statistical results from the Kepler Mission, and use these results to choose the best targets for two-minute observations, optimizing for small planets for which masses can conceivably be measured using follow up Doppler spectroscopy by current and future Doppler spectrometers. The catalog is incorporated into the TESS Input Catalog and TESS Candidate Target List until a more complete and accurate cool dwarf catalog identified by ESA's Gaia Mission can be incorporated.Comment: Accepted to The Astronomical Journal. For the full catalog, please contact the corresponding autho

    H0LiCOW X: Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI2033-4723

    Get PDF
    Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce high-order perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on H0H_0 of a few-percent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI2033-4723 (zsrc=1.662z_{\rm src} = 1.662, zlensz_{\rm lens} = 0.6575), one of the core targets of the H0LICOW project for which we present cosmological inferences in a companion paper (Rusu et al. 2019). We use the Gemini and ESO-Very Large telescopes to measure the spectroscopic redshifts of the brightest galaxies towards the lens, and use the ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the lens (σlos=25021+15\sigma_{\rm {los}}= 250^{+15}_{-21} km/s) and of several nearby galaxies. In addition, we measure photometric redshifts and stellar masses of all galaxies down to i<23i < 23 mag, mainly based on Dark Energy Survey imaging (DR1). Our new catalog, complemented with literature data, more than doubles the number of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding to 116 (64) the number of spectroscopic redshifts for galaxies separated by less than 3 arcmin (2 arcmin) from the lens. Using the flexion-shift as a measure of the amplitude of the gravitational perturbation, we identify 2 galaxy groups and 3 galaxies that require specific attention in the lens models. The ESO MUSE data enable us to measure the velocity-dispersions of three of these galaxies. These results are essential for the cosmological inference analysis presented in Rusu et al. (2019).Comment: Matches the version accepted for publication by MNRAS. Note that this paper previously appeared as H0LICOW X
    corecore