15,895 research outputs found

    Finite-time singularity in the dynamics of the world population, economic and financial indices

    Full text link
    Contrary to common belief, both the Earth's human population and its economic output have grown faster than exponential, i.e., in a super-Malthusian mode, for most of the known history. These growth rates are compatible with a spontaneous singularity occuring at the same critical time 2052 +- 10 signaling an abrupt transition to a new regime. The degree of abruptness can be infered from the fact that the maximum of the world population growth rate was reached in 1970, i.e., about 80 years before the predicted singular time, corresponding to approximately 4% of the studied time interval over which the acceleration is documented. This rounding-off of the finite-time singularity is probably due to a combination of well-known finite-size effects and friction and suggests that we have already entered the transition region to a new regime. In theoretical support, a multivariate analysis coupling population, capital, R&D and technology shows that a dramatic acceleration in the population during most of the timespan can occur even though the isolated dynamics do not exhibit it. Possible scenarios for the cross-over and the new regime are discussed. Nottale, Chaline and Grou have recently independently applied a log-periodic analysis to the main crises of different civilisations. It is striking that these two independent analyses based on a different data set gives a critical time which is compatible within the error bars.Comment: 29 pages including 37 figures, addition of a Note Added in Proofs connecting with the independent analysis of Nottale, Chaline and Grou of economic crises and of the evolution of different civilisation

    Power laws and stretched exponentials in a noisy finite-time-singularity model

    Full text link
    We discuss the influence of white noise on a generic dynamical finite-time-singularity model for a single degree of freedom. We find that the noise effectively resolves the finite-time-singularity and replaces it by a first-passage-time or absorbing state distribution with a peak at the singularity and a long time tail exhibiting power law or stretched exponential behavior. The study might be of relevance in the context of hydrodynamics on a nanometer scale, in material physics, and in biophysics.Comment: 10 pages revtex file, including 4 postscript-figures. References added and a few typos correcte

    Ideal evolution of MHD turbulence when imposing Taylor-Green symmetries

    Full text link
    We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the four-fold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a re-gridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 614436144^3 points, and three different configurations on grids of 409634096^3 points. At the highest resolution, two different current and vorticity sheet systems are found to collide, producing two successive accelerations in the development of small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is probably leading locally to a strong bending and directional variability of such lines. A novel analytical method, based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled out, and the singularity time could be somewhere between t=2.33t=2.33 and t=2.70.t=2.70. More robust conclusions will require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.Comment: 18 pages, 13 figures, 2 tables; submitted to Physical Review

    Denoising by multiwavelet singularity detection

    Get PDF
    Wavelet denoising by singularity detection was proposed as an algorithm that combines Mallat and Donoho’s denoising approaches. With wavelet transform modulus sum, we can avoid the error and ambiguities of tracing the modulus maxima across scales and the complicated and computationally demanding reconstruction process. We can also avoid the visual artifacts produced by shrinkage. In this paper, we investigate a multiwavelet denoising algorithm based on a modified singularity detection approach. Improved signal denoising results are obtained in comparison to the single wavelet case

    Towards Landslide Predictions: Two Case Studies

    Full text link
    In a previous work [Helmstetter, 2003], we have proposed a simple physical model to explain the accelerating displacements preceding some catastrophic landslides, based on a slider-block model with a state and velocity dependent friction law. This model predicts two regimes of sliding, stable and unstable leading to a critical finite-time singularity. This model was calibrated quantitatively to the displacement and velocity data preceding two landslides, Vaiont (Italian Alps) and La Clapi\`ere (French Alps), showing that the former (resp. later) landslide is in the unstable (resp. stable) sliding regime. Here, we test the predictive skills of the state-and-velocity-dependent model on these two landslides, using a variety of techniques. For the Vaiont landslide, our model provides good predictions of the critical time of failure up to 20 days before the collapse. Tests are also presented on the predictability of the time of the change of regime for la Clapi\`ere landslide.Comment: 30 pages with 12 eps figure
    corecore