5,014 research outputs found

    Noise Analysis and Noise-based Optimization for Resonant MEMS Structures

    Full text link
    This paper presents a detailed noise analysis and a noise-based optimization procedure for resonant MEMS structures. A design for high sensitivity of MEMS structures needs to take into account the noise shaping induced by damping phenomena at micro scale. The existing literature presents detailed models for the damping at microscale, but usually neglects them in the noise analysis process, assuming instead a white spectrum approximation for the mechano-thermal noise. The present work extends the implications of the complex gas-solid interaction into the field of noise analysis for mechanical sensors, and provides a semi-automatic procedure for behavioral macromodel extraction and sensor optimization with respect to signal-to-noise ratio.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    A comparison between different optimization criteria for tuned mass dampers design

    Get PDF
    Tuned mass sampers (TMDs) are widely used strategies for vibration control in many engineering applications, so that many TMD optimization criteria have been proposed till now. However, they normally consider only TMD stiffness and damping as design variables and assume that the tuned mass is a pre-selected value. In this work a more complete approach is proposed and then also TMD mass ratio is optimized. A standard single degree of freedom system is investigated to evaluate TMD protection efficiency in case of excitation at the support. More precisely, this model is used to develop two different optimizations criteria which minimize the main system displacement or the inertial acceleration. Different environmental conditions described by various char- acterizations of the input, here modelled by a stationary filtered stochastic process, are considered. Results show that all solutions obtained considering also the mass of the TMD as design variable are more efficient if compared with those obtained without it. However, in many cases these solutions are inappropriate because the optimal TMD mass is greater than real admissible values in practical technical applications for civil and mechanical engineering. Anyway, one can deduce that there are some interesting indications for applications in some actual contexts. In fact, the results show that there are some ranges of environmental parameters ranges where results attained by the displacement criterion are compatible with real applications requiring some percent of main system mass. Finally, the present research gives promising indications for complete TMD optimization application in emerging technical contexts, as micro- mechanical devices and nano resonant beam

    Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant

    Get PDF
    This paper presents an implant-based wireless pressure sensing paradigm for long-range continuous intraocular pressure (IOP) monitoring of glaucoma patients. An implantable parylene-based pressure sensor has been developed, featuring an electrical LC-tank resonant circuit for passive wireless sensing without power consumption on the implanted site. The sensor is microfabricated with the use of parylene C (poly-chlorop- xylylene) to create a flexible coil substrate that can be folded for smaller physical form factor so as to achieve minimally invasive implantation, while stretched back without damage for enhanced inductive sensor–reader coil coupling so as to achieve strong sensing signal. A data-processed external readout method has also been developed to support pressure measurements. By incorporating the LC sensor and the readout method, wireless pressure sensing with 1-mmHg resolution in longer than 2-cm distance is successfully demonstrated. Other than extensive on-bench characterization, device testing through six-month chronic in vivo and acute ex vivo animal studies has verified the feasibility and efficacy of the sensor implant in the surgical aspect, including robust fixation and long-term biocompatibility in the intraocular environment. With meeting specifications of practical wireless pressure sensing and further reader development, this sensing methodology is promising for continuous, convenient, direct, and faithful IOP monitoring

    Nanoelectromechanical systems

    Get PDF
    Nanoelectromechanical systems (NEMS) are drawing interest from both technical and scientific communities. These are electromechanical systems, much like microelectromechanical systems, mostly operated in their resonant modes with dimensions in the deep submicron. In this size regime, they come with extremely high fundamental resonance frequencies, diminished active masses,and tolerable force constants; the quality (Q) factors of resonance are in the range Q~10^3–10^5—significantly higher than those of electrical resonant circuits. These attributes collectively make NEMS suitable for a multitude of technological applications such as ultrafast sensors, actuators, and signal processing components. Experimentally, NEMS are expected to open up investigations of phonon mediated mechanical processes and of the quantum behavior of mesoscopic mechanical systems. However, there still exist fundamental and technological challenges to NEMS optimization. In this review we shall provide a balanced introduction to NEMS by discussing the prospects and challenges in this rapidly developing field and outline an exciting emerging application, nanoelectromechanical mass detection

    MEMS RESONATOR MASS LOADING NOISE MODEL: THE CASE OF BIMODAL ADSORBING SURFACE AND FINITE ADSORBATE AMOUNT

    Get PDF
    Modeling of adsorption and desorption in microelectromechanical systems (MEMS) generally is crucial for their optimization and control, whether it is necessary to decrease the adsorption-desorption influence (thus ensuring stable operation of ultra-precise micro and nanoresonators) or to increase it (and enhancing in this manner the sensitivity of chemical and biological resonant sensors). In this work we derive and use analytical mathematical expressions to model stochastic fluctuations of the mass adsorbed on the MEMS resonator (mass loading noise). We consider the case where the resonator surface incorporates two different types of binding sites and where non-negligible depletion of the adsorbate occurs in a closed resonator chamber. We arrive at a novel expression for the power spectral density of mass loading noise in resonators and prove the necessity of its application in cases when resonators are exposed to low adsorbate concentrations. We use the novel approach presented here to calculate the resonator performance. In this way we ensure optimization of these MEMS devices and consequentially abatement of adsorption-desorption noise-caused degradation of their operation, both in the case of micro/nanoresonators and resonant sensors. This work is intended for a general use in the design, development and optimization of different MEMS systems based on mechanical resonators, ranging from the RF components to chemical and biological sensors

    Analysis Of The Suspension Beam In Accelerometer For Stiffness Constant And Resonant Frequency By Using Analytical And Numerical Investigation

    Get PDF
    Mikro-meterpecut yang digunakan dalam pelbagai penerapan hanya akan tercapai dengan jayanya sekiranya keperluan frekuensi resonans dan kepekaan dapat dipenuhi dan konsisten. A successful and consistent performance of micro-accelerometer which has been applied in various applications can only be achieved when the resonant frequency and the sensitivity requirement are fulfilled
    corecore