699 research outputs found

    Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks

    Full text link
    Designing high performance channel assignment schemes to harness the potential of multi-radio multi-channel deployments in wireless mesh networks (WMNs) is an active research domain. A pragmatic channel assignment approach strives to maximize network capacity by restraining the endemic interference and mitigating its adverse impact on network performance. Interference prevalent in WMNs is multi-faceted, radio co-location interference (RCI) being a crucial aspect that is seldom addressed in research endeavors. In this effort, we propose a set of intelligent channel assignment algorithms, which focus primarily on alleviating the RCI. These graph theoretic schemes are structurally inspired by the spatio-statistical characteristics of interference. We present the theoretical design foundations for each of the proposed algorithms, and demonstrate their potential to significantly enhance network capacity in comparison to some well-known existing schemes. We also demonstrate the adverse impact of radio co- location interference on the network, and the efficacy of the proposed schemes in successfully mitigating it. The experimental results to validate the proposed theoretical notions were obtained by running an exhaustive set of ns-3 simulations in IEEE 802.11g/n environments.Comment: Accepted @ ICACCI-201

    Distributed optimal congestion control and channel assignment in wireless mesh networks

    Get PDF
    Wireless mesh networks have numerous advantages in terms of connectivity as well as reliability. Traditionally the nodes in wireless mesh networks are equipped with single radio, but the limitations are lower throughput and limited use of the available wireless channel. In order to overcome this, the recent advances in wireless mesh networks are based on multi-channel multi-radio approach. Channel assignment is a technique that selects the best channel for a node or to the entire network just to increase the network capacity. To maximize the throughput and the capacity of the network, multiple channels with multiple radios were introduced in these networks. In the proposed system, algorithms are developed to improve throughput, minimise delay, reduce average energy consumption and increase the residual energy for multi radio multi-channel wireless mesh networks. In literature, the existing channel assignment algorithms fail to consider both interflow and intra flow interferences. The limitations are inaccurate bandwidth estimation, throughput degradation under heavy traffic and unwanted energy consumption during low traffic and increase in delay. In order to improve the performance of the network distributed optimal congestion control and channel assignment algorithm (DOCCA) is proposed. In this algorithm, if congestion is identified, the information is given to previous node. According to the congestion level, the node adjusts itself to minimise congestion

    Topology preservation and control approach for interference aware non-overlapping channel assignment in wireless mesh networks

    Get PDF
    The Wireless Mesh Networks (WMN) has attracted significant interests due to their fast and inexpensive deployment and the ability to provide flexible and ubiquitous internet access. A key challenge to deploy the WMN is the interference problem between the links. The interference results in three problems of limited throughput, capacity and fairness of the WMN. The topology preservation strategy is used in this research to improve the throughput and address the problems of link failure and partitioning of the WMN. However, the existing channel assignment algorithms, based on the topology preservation strategy, result in high interference. Thus, there is a need to improve the network throughput by using the topology preservation strategy while the network connectivity is maintained. The problems of fairness and network capacity in the dense networks are due to limited available resources in WMN. Hence, efficient exploitation of the available resources increases the concurrent transmission between the links and improves the network performance. Firstly, the thesis proposes a Topology Preservation for Low Interference Channel Assignment (TLCA) algorithm to mitigate the impact of interference based on the topology preservation strategy. Secondly, it proposes the Max-flow based on Topology Control Channel Assignment (MTCA) algorithm to improve the network capacity by removing useless links from the original topology. Thirdly, the proposed Fairness Distribution of the Non-Overlapping Channels (FNOC) algorithm improves the fairness of the WMN through an equitable distribution of the non-overlapping channels between the wireless links. The F-NOC is based on the Differential Evolution optimization algorithm. The numerical and simulation results indicate that the proposed algorithms perform better compared to Connected Low Interference Channel Assignment algorithm (CLICA) in terms of network capacity (19%), fractional network interference (80%) and network throughput (28.6%). In conclusion, the proposed algorithms achieved higher throughput, better network capacity and lower interference compared to previous algorithms

    A Socio-inspired CALM Approach to Channel Assignment Performance Prediction and WMN Capacity Estimation

    Full text link
    A significant amount of research literature is dedicated to interference mitigation in Wireless Mesh Networks (WMNs), with a special emphasis on designing channel allocation (CA) schemes which alleviate the impact of interference on WMN performance. But having countless CA schemes at one's disposal makes the task of choosing a suitable CA for a given WMN extremely tedious and time consuming. In this work, we propose a new interference estimation and CA performance prediction algorithm called CALM, which is inspired by social theory. We borrow the sociological idea of a "sui generis" social reality, and apply it to WMNs with significant success. To achieve this, we devise a novel Sociological Idea Borrowing Mechanism that facilitates easy operationalization of sociological concepts in other domains. Further, we formulate a heuristic Mixed Integer Programming (MIP) model called NETCAP which makes use of link quality estimates generated by CALM to offer a reliable framework for network capacity prediction. We demonstrate the efficacy of CALM by evaluating its theoretical estimates against experimental data obtained through exhaustive simulations on ns-3 802.11g environment, for a comprehensive CA test-set of forty CA schemes. We compare CALM with three existing interference estimation metrics, and demonstrate that it is consistently more reliable. CALM boasts of accuracy of over 90% in performance testing, and in stress testing too it achieves an accuracy of 88%, while the accuracy of other metrics drops to under 75%. It reduces errors in CA performance prediction by as much as 75% when compared to other metrics. Finally, we validate the expected network capacity estimates generated by NETCAP, and show that they are quite accurate, deviating by as low as 6.4% on an average when compared to experimentally recorded results in performance testing

    Multi - Channel Wireless Mesh Networks

    Get PDF

    Enabling Parallel Wireless Communication in Mobile Robot Teams

    Get PDF
    Wireless inter-robot communication enables robot teams to cooperatively solve complex problems that cannot be addressed by a single robot. Applications for cooperative robot teams include search and rescue, exploration and surveillance. Communication is one of the most important components in future autonomous robot systems and is essential for core functions such as inter-robot coordination, neighbour discovery and cooperative control algorithms. In environments where communication infrastructure does not exist, decentralised multi-hop networks can be constructed using only the radios on-board each robot. These are known as wireless mesh networks (WMNs). However existing WMNs have limited capacity to support even small robot teams. There is a need for WMNs where links act like dedicated point-to-point connections such as in wired networks. Addressing this problem requires a fundamentally new approach to WMN construction and this thesis is the first comprehensive study in the multi-robot literature to address these challenges. In this thesis, we propose a new class of communication systems called zero mutual interference (ZMI) networks that are able to emulate the point-to-point properties of a wired network over a WMN implementation. We instantiate the ZMI network using a multi-radio multi-channel architecture that autonomously adapts its topology and channel allocations such that all network edges communicate at the full capacity of the radio hardware. We implement the ZMI network on a 100-radio testbed with up to 20-individual nodes and verify its theoretical properties. Mobile robot experiments also demonstrate these properties are practically achievable. The results are an encouraging indication that the ZMI network approach can facilitate the communication demands of large cooperative robot teams deployed in practical problems such as data pipe-lining, decentralised optimisation, decentralised data fusion and sensor networks

    Characterization,Estimation, and Mitigation of Interference in Multi- Radio Multi- Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) have evolved into a wireless communication technology of im-mense interest. But technological advancements in WMNs have inadvertently spawned a plethora of network performance bottlenecks, caused primarily by the rise in prevalent interference. The benefits that multi-radio multichannel(MRMC) WMNs offer viz., augmented network capacity, uninterrupted connectivity and reduced latency, are depreciated by the detrimental effect of prevalent interference. Interference mitigation is thus a prime objective in WMN deployments. Conflict Graphs are indispensable tools used to theoretically represent and estimate the interference in wire- less networks. This interference is multidimensional, radio co-location interference (RCI) being a crucial aspect that is seldom addressed in conflict graph generation approaches suggested in re- search studies. Further, designing high performance channel assignment (CA) schemes to harness the potential of MRMC deployments in WMNs is an active research domain. A pragmatic channel assignment approach strives to maximize network capacity by restraining the endemic interference and mitigating its adverse impact on network performance metrics. However, numerous CA schemes have been proposed in research literature and there is a lack of CA performance prediction techniques which could assist in choosing a suitable CA for a given WMN
    corecore