2,303 research outputs found

    Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

    Full text link
    We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems --- including multi-constraint variants --- by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without weakening the model. As opposed to our method, which provides strong models, conventional models are usually highly symmetric and provide very weak lower bounds. Our formulation is equivalent to Gilmore and Gomory's, thus providing a very strong linear relaxation. However, instead of using column-generation in an iterative process, the method constructs a graph, where paths from the source to the target node represent every valid packing pattern. The same method, without any problem-specific parameterization, was used to solve a large variety of instances from several different cutting and packing problems. In this paper, we deal with vector packing, graph coloring, bin packing, cutting stock, cardinality constrained bin packing, cutting stock with cutting knife limitation, cutting stock with binary patterns, bin packing with conflicts, and cutting stock with binary patterns and forbidden pairs. We report computational results obtained with many benchmark test data sets, all of them showing a large advantage of this formulation with respect to the traditional ones

    Non-Preemptive Scheduling on Machines with Setup Times

    Full text link
    Consider the problem in which n jobs that are classified into k types are to be scheduled on m identical machines without preemption. A machine requires a proper setup taking s time units before processing jobs of a given type. The objective is to minimize the makespan of the resulting schedule. We design and analyze an approximation algorithm that runs in time polynomial in n, m and k and computes a solution with an approximation factor that can be made arbitrarily close to 3/2.Comment: A conference version of this paper has been accepted for publication in the proceedings of the 14th Algorithms and Data Structures Symposium (WADS

    Heuristics with Performance Guarantees for the Minimum Number of Matches Problem in Heat Recovery Network Design

    Get PDF
    Heat exchanger network synthesis exploits excess heat by integrating process hot and cold streams and improves energy efficiency by reducing utility usage. Determining provably good solutions to the minimum number of matches is a bottleneck of designing a heat recovery network using the sequential method. This subproblem is an NP-hard mixed-integer linear program exhibiting combinatorial explosion in the possible hot and cold stream configurations. We explore this challenging optimization problem from a graph theoretic perspective and correlate it with other special optimization problems such as cost flow network and packing problems. In the case of a single temperature interval, we develop a new optimization formulation without problematic big-M parameters. We develop heuristic methods with performance guarantees using three approaches: (i) relaxation rounding, (ii) water filling, and (iii) greedy packing. Numerical results from a collection of 51 instances substantiate the strength of the methods

    Fast and Deterministic Approximations for k-Cut

    Get PDF
    In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k connected components. The minimum weight k-cut can be computed in n^O(k) time, but when k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [Goldschmidt and Hochbaum, 1994]. For poly(m,n,k)-time algorithms, the best possible approximation factor is essentially 2 under the small set expansion hypothesis [Manurangsi, 2017]. Saran and Vazirani [1995] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed via O(k) minimum cuts, which implies a O~(km) randomized running time via the nearly linear time randomized min-cut algorithm of Karger [2000]. Nagamochi and Kamidoi [2007] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed deterministically in O(mn + n^2 log n) time. These results prompt two basic questions. The first concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts matching the randomized running time of O~(km)? The second question qualitatively compares minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as the minimum cut - in O~(m) randomized time? We give a deterministic approximation algorithm that computes (2 + eps)-minimum k-cuts in O(m log^3 n / eps^2) time, via a (1 + eps)-approximation for an LP relaxation of k-cut

    Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching

    Full text link
    We present a deterministic distributed algorithm that computes a (2Δ1)(2\Delta-1)-edge-coloring, or even list-edge-coloring, in any nn-node graph with maximum degree Δ\Delta, in O(log7Δlogn)O(\log^7 \Delta \log n) rounds. This answers one of the long-standing open questions of \emph{distributed graph algorithms} from the late 1980s, which asked for a polylogarithmic-time algorithm. See, e.g., Open Problem 4 in the Distributed Graph Coloring book of Barenboim and Elkin. The previous best round complexities were 2O(logn)2^{O(\sqrt{\log n})} by Panconesi and Srinivasan [STOC'92] and O~(Δ)+O(logn)\tilde{O}(\sqrt{\Delta}) + O(\log^* n) by Fraigniaud, Heinrich, and Kosowski [FOCS'16]. A corollary of our deterministic list-edge-coloring also improves the randomized complexity of (2Δ1)(2\Delta-1)-edge-coloring to poly(loglogn)(\log\log n) rounds. The key technical ingredient is a deterministic distributed algorithm for \emph{hypergraph maximal matching}, which we believe will be of interest beyond this result. In any hypergraph of rank rr --- where each hyperedge has at most rr vertices --- with nn nodes and maximum degree Δ\Delta, this algorithm computes a maximal matching in O(r5log6+logrΔlogn)O(r^5 \log^{6+\log r } \Delta \log n) rounds. This hypergraph matching algorithm and its extensions lead to a number of other results. In particular, a polylogarithmic-time deterministic distributed maximal independent set algorithm for graphs with bounded neighborhood independence, hence answering Open Problem 5 of Barenboim and Elkin's book, a ((logΔ/ε)O(log(1/ε)))((\log \Delta/\varepsilon)^{O(\log (1/\varepsilon))})-round deterministic algorithm for (1+ε)(1+\varepsilon)-approximation of maximum matching, and a quasi-polylogarithmic-time deterministic distributed algorithm for orienting λ\lambda-arboricity graphs with out-degree at most (1+ε)λ(1+\varepsilon)\lambda, for any constant ε>0\varepsilon>0, hence partially answering Open Problem 10 of Barenboim and Elkin's book
    corecore