10,701 research outputs found

    Transfer Learning across Networks for Collective Classification

    Full text link
    This paper addresses the problem of transferring useful knowledge from a source network to predict node labels in a newly formed target network. While existing transfer learning research has primarily focused on vector-based data, in which the instances are assumed to be independent and identically distributed, how to effectively transfer knowledge across different information networks has not been well studied, mainly because networks may have their distinct node features and link relationships between nodes. In this paper, we propose a new transfer learning algorithm that attempts to transfer common latent structure features across the source and target networks. The proposed algorithm discovers these latent features by constructing label propagation matrices in the source and target networks, and mapping them into a shared latent feature space. The latent features capture common structure patterns shared by two networks, and serve as domain-independent features to be transferred between networks. Together with domain-dependent node features, we thereafter propose an iterative classification algorithm that leverages label correlations to predict node labels in the target network. Experiments on real-world networks demonstrate that our proposed algorithm can successfully achieve knowledge transfer between networks to help improve the accuracy of classifying nodes in the target network.Comment: Published in the proceedings of IEEE ICDM 201

    Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks

    Full text link
    Heterogeneous information networks (HINs) are ubiquitous in real-world applications. In the meantime, network embedding has emerged as a convenient tool to mine and learn from networked data. As a result, it is of interest to develop HIN embedding methods. However, the heterogeneity in HINs introduces not only rich information but also potentially incompatible semantics, which poses special challenges to embedding learning in HINs. With the intention to preserve the rich yet potentially incompatible information in HIN embedding, we propose to study the problem of comprehensive transcription of heterogeneous information networks. The comprehensive transcription of HINs also provides an easy-to-use approach to unleash the power of HINs, since it requires no additional supervision, expertise, or feature engineering. To cope with the challenges in the comprehensive transcription of HINs, we propose the HEER algorithm, which embeds HINs via edge representations that are further coupled with properly-learned heterogeneous metrics. To corroborate the efficacy of HEER, we conducted experiments on two large-scale real-words datasets with an edge reconstruction task and multiple case studies. Experiment results demonstrate the effectiveness of the proposed HEER model and the utility of edge representations and heterogeneous metrics. The code and data are available at https://github.com/GentleZhu/HEER.Comment: 10 pages. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, United Kingdom, ACM, 201

    Contextualization of topics - browsing through terms, authors, journals and cluster allocations

    Full text link
    This paper builds on an innovative Information Retrieval tool, Ariadne. The tool has been developed as an interactive network visualization and browsing tool for large-scale bibliographic databases. It basically allows to gain insights into a topic by contextualizing a search query (Koopman et al., 2015). In this paper, we apply the Ariadne tool to a far smaller dataset of 111,616 documents in astronomy and astrophysics. Labeled as the Berlin dataset, this data have been used by several research teams to apply and later compare different clustering algorithms. The quest for this team effort is how to delineate topics. This paper contributes to this challenge in two different ways. First, we produce one of the different cluster solution and second, we use Ariadne (the method behind it, and the interface - called LittleAriadne) to display cluster solutions of the different group members. By providing a tool that allows the visual inspection of the similarity of article clusters produced by different algorithms, we present a complementary approach to other possible means of comparison. More particular, we discuss how we can - with LittleAriadne - browse through the network of topical terms, authors, journals and cluster solutions in the Berlin dataset and compare cluster solutions as well as see their context.Comment: proceedings of the ISSI 2015 conference (accepted

    Ariadne's Thread - Interactive Navigation in a World of Networked Information

    Full text link
    This work-in-progress paper introduces an interface for the interactive visual exploration of the context of queries using the ArticleFirst database, a product of OCLC. We describe a workflow which allows the user to browse live entities associated with 65 million articles. In the on-line interface, each query leads to a specific network representation of the most prevailing entities: topics (words), authors, journals and Dewey decimal classes linked to the set of terms in the query. This network represents the context of a query. Each of the network nodes is clickable: by clicking through, a user traverses a large space of articles along dimensions of authors, journals, Dewey classes and words simultaneously. We present different use cases of such an interface. This paper provides a link between the quest for maps of science and on-going debates in HCI about the use of interactive information visualisation to empower users in their search.Comment: CHI'15 Extended Abstracts, April 18-23, 2015, Seoul, Republic of Korea. ACM 978-1-4503-3146-3/15/0

    Collective navigation of complex networks: Participatory greedy routing

    Full text link
    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.Comment: Supplementary Information and Videos: https://koljakleineberg.wordpress.com/2016/11/14/collective-navigation-of-complex-networks-participatory-greedy-routing
    • …
    corecore