1,963 research outputs found

    Investigation of fitness function weight-coefficients for optimization in WMN-PSO simulation system

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a simulation system based on Particle Swam Optimization for solving node placement problem in wireless mesh networks, called WMN-PSO. In this paper, we use Size of Giant Component (SGC) and Number of Covered Mesh Clients (NCMC) as metrics for optimization. Then, we analyze effects of weight-coefficients for SGC and NCMC. From the simulation results, we found that the best values of the weight-coefficients for SGC and NCMC are 0.7 and 0.3, respectively.Peer ReviewedPostprint (author's final draft

    Fast local search for fuzzy job shop scheduling

    Get PDF
    In the sequel, we propose a new neighbourhood structure for local search for the fuzzy job shop scheduling problem. This is a variant of the well-known job shop problem, with uncertainty in task durations modelled using fuzzy numbers and where the goal is to minimise the expected makespan of the resulting schedule. The new neighbourhood structure is based in changing the relative order of subsequences of tasks within critical blocks. We study its theoretical properties and provide a makespan estimate which allows to select only feasible neighbours while covering a greater portion of the search space than a previous neighbourhood from the literature. Despite its larger search domain, experimental results show that this new structure notably reduces the computational load of local search with respect to the previous neighbourhood while maintaining or even improving solution quality
    corecore