24,103 research outputs found

    An Attention-based Collaboration Framework for Multi-View Network Representation Learning

    Full text link
    Learning distributed node representations in networks has been attracting increasing attention recently due to its effectiveness in a variety of applications. Existing approaches usually study networks with a single type of proximity between nodes, which defines a single view of a network. However, in reality there usually exists multiple types of proximities between nodes, yielding networks with multiple views. This paper studies learning node representations for networks with multiple views, which aims to infer robust node representations across different views. We propose a multi-view representation learning approach, which promotes the collaboration of different views and lets them vote for the robust representations. During the voting process, an attention mechanism is introduced, which enables each node to focus on the most informative views. Experimental results on real-world networks show that the proposed approach outperforms existing state-of-the-art approaches for network representation learning with a single view and other competitive approaches with multiple views.Comment: CIKM 201

    Transfer Learning across Networks for Collective Classification

    Full text link
    This paper addresses the problem of transferring useful knowledge from a source network to predict node labels in a newly formed target network. While existing transfer learning research has primarily focused on vector-based data, in which the instances are assumed to be independent and identically distributed, how to effectively transfer knowledge across different information networks has not been well studied, mainly because networks may have their distinct node features and link relationships between nodes. In this paper, we propose a new transfer learning algorithm that attempts to transfer common latent structure features across the source and target networks. The proposed algorithm discovers these latent features by constructing label propagation matrices in the source and target networks, and mapping them into a shared latent feature space. The latent features capture common structure patterns shared by two networks, and serve as domain-independent features to be transferred between networks. Together with domain-dependent node features, we thereafter propose an iterative classification algorithm that leverages label correlations to predict node labels in the target network. Experiments on real-world networks demonstrate that our proposed algorithm can successfully achieve knowledge transfer between networks to help improve the accuracy of classifying nodes in the target network.Comment: Published in the proceedings of IEEE ICDM 201

    Similarity-Based Classification in Partially Labeled Networks

    Get PDF
    We propose a similarity-based method, using the similarity between nodes, to address the problem of classification in partially labeled networks. The basic assumption is that two nodes are more likely to be categorized into the same class if they are more similar. In this paper, we introduce ten similarity indices, including five local ones and five global ones. Empirical results on the co-purchase network of political books show that the similarity-based method can give high accurate classification even when the labeled nodes are sparse which is one of the difficulties in classification. Furthermore, we find that when the target network has many labeled nodes, the local indices can perform as good as those global indices do, while when the data is sparce the global indices perform better. Besides, the similarity-based method can to some extent overcome the unconsistency problem which is another difficulty in classification.Comment: 13 pages,3 figures,1 tabl
    • …
    corecore