394 research outputs found

    Node Query Preservation for Deterministic Linear Top-Down Tree Transducers

    Full text link
    This paper discusses the decidability of node query preservation problems for XML document transformations. We assume a transformation given by a deterministic linear top-down data tree transducer (abbreviated as DLT^V) and an n-ary query based on runs of a tree automaton. We say that a DLT^V Tr strongly preserves a query Q if there is a query Q' such that for every document t, the answer set of Q' for Tr(t) is equal to the answer set of Q for t. Also we say that Tr weakly preserves Q if there is a query Q' such that for every t_d in the range of Tr, the answer set of Q' for t_d is equal to the union of the answer set of Q for t such that t_d = Tr(t). We show that the weak preservation problem is coNP-complete and the strong preservation problem is in 2-EXPTIME.Comment: In Proceedings TTATT 2013, arXiv:1311.505

    Linear Bounded Composition of Tree-Walking Tree Transducers: Linear Size Increase and Complexity

    Get PDF
    Compositions of tree-walking tree transducers form a hierarchy with respect to the number of transducers in the composition. As main technical result it is proved that any such composition can be realized as a linear bounded composition, which means that the sizes of the intermediate results can be chosen to be at most linear in the size of the output tree. This has consequences for the expressiveness and complexity of the translations in the hierarchy. First, if the computed translation is a function of linear size increase, i.e., the size of the output tree is at most linear in the size of the input tree, then it can be realized by just one, deterministic, tree-walking tree transducer. For compositions of deterministic transducers it is decidable whether or not the translation is of linear size increase. Second, every composition of deterministic transducers can be computed in deterministic linear time on a RAM and in deterministic linear space on a Turing machine, measured in the sum of the sizes of the input and output tree. Similarly, every composition of nondeterministic transducers can be computed in simultaneous polynomial time and linear space on a nondeterministic Turing machine. Their output tree languages are deterministic context-sensitive, i.e., can be recognized in deterministic linear space on a Turing machine. The membership problem for compositions of nondeterministic translations is nondeterministic polynomial time and deterministic linear space. The membership problem for the composition of a nondeterministic and a deterministic tree-walking tree translation (for a nondeterministic IO macro tree translation) is log-space reducible to a context-free language, whereas the membership problem for the composition of a deterministic and a nondeterministic tree-walking tree translation (for a nondeterministic OI macro tree translation) is possibly NP-complete

    08171 Abstracts Collection -- Beyond the Finite: New Challenges in Verification and Semistructured Data

    Get PDF
    From 20.04. to 25.04.2008, the Dagstuhl Seminar 08171 ``Beyond the Finite: New Challenges in Verification and Semistructured Data\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Evaluation of XPath Queries against XML Streams

    Get PDF
    XML is nowadays the de facto standard for electronic data interchange on the Web. Available XML data ranges from small Web pages to ever-growing repositories of, e.g., biological and astronomical data, and even to rapidly changing and possibly unbounded streams, as used in Web data integration and publish-subscribe systems. Animated by the ubiquity of XML data, the basic task of XML querying is becoming of great theoretical and practical importance. The last years witnessed efforts as well from practitioners, as also from theoreticians towards defining an appropriate XML query language. At the core of this common effort has been identified a navigational approach for information localization in XML data, comprised in a practical and simple query language called XPath. This work brings together the two aforementioned ``worlds'', i.e., the XPath query evaluation and the XML data streams, and shows as well theoretical as also practical relevance of this fusion. Its relevance can not be subsumed by traditional database management systems, because the latter are not designed for rapid and continuous loading of individual data items, and do not directly support the continuous queries that are typical for stream applications. The first central contribution of this work consists in the definition and the theoretical investigation of three term rewriting systems to rewrite queries with reverse predicates, like parent or ancestor, into equivalent forward queries, i.e., queries without reverse predicates. Our rewriting approach is vital to the evaluation of queries with reverse predicates against unbounded XML streams, because neither the storage of past fragments of the stream, nor several stream traversals, as required by the evaluation of reverse predicates, are affordable. Beyond their declared main purpose of providing equivalences between queries with reverse predicates and forward queries, the applications of our rewriting systems shed light on other query language properties, like the expressivity of some of its fragments, the query minimization, or even the complexity of query evaluation. For example, using these systems, one can rewrite any graph query into an equivalent forward forest query. The second main contribution consists in a streamed and progressive evaluation strategy of forward queries against XML streams. The evaluation is specified using compositions of so-called stream processing functions, and is implemented using networks of deterministic pushdown transducers. The complexity of this evaluation strategy is polynomial in both the query and the data sizes for forward forest queries and even for a large fragment of graph queries. The third central contribution consists in two real monitoring applications that use directly the results of this work: the monitoring of processes running on UNIX computers, and a system for providing graphically real-time traffic and travel information, as broadcasted within ubiquitous radio signals

    Stream Processing using Grammars and Regular Expressions

    Full text link
    In this dissertation we study regular expression based parsing and the use of grammatical specifications for the synthesis of fast, streaming string-processing programs. In the first part we develop two linear-time algorithms for regular expression based parsing with Perl-style greedy disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle and action machines, and a finite-state specialization of the streaming parsing algorithm presented in the first part. In the second part we also develop a new linear-time streaming parsing algorithm for parsing expression grammars (PEG) which generalizes the regular grammars of Kleenex. The algorithm is based on a bottom-up tabulation algorithm reformulated using least fixed points and evaluated using an instance of the chaotic iteration scheme by Cousot and Cousot

    Rewrite based Verification of XML Updates

    Get PDF
    We consider problems of access control for update of XML documents. In the context of XML programming, types can be viewed as hedge automata, and static type checking amounts to verify that a program always converts valid source documents into also valid output documents. Given a set of update operations we are particularly interested by checking safety properties such as preservation of document types along any sequence of updates. We are also interested by the related policy consistency problem, that is detecting whether a sequence of authorized operations can simulate a forbidden one. We reduce these questions to type checking problems, solved by computing variants of hedge automata characterizing the set of ancestors and descendants of the initial document type for the closure of parameterized rewrite rules

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Efficient Inclusion Checking for Deterministic Tree Automata and XML Schemas

    Get PDF
    Special issue of LATA'08.International audienceWe present algorithms for testing language inclusion L(A) ⊆ L(B) between tree automata in time O(|A| |B|) where B is deterministic (bottom-up or top-down). We extend our algorithms for testing inclusion of automata for unranked trees A in deterministic DTDs or deterministic EDTDs with restrained competition D in time O(|A| |Σ| |D|). Previous algorithms were less efficient or less general
    • …
    corecore