113,788 research outputs found

    Bridging the Gap Between Computational Photography and Visual Recognition

    Full text link
    What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than ideal circumstances? Can the application of such algorithms as a pre-processing step to improve image interpretability for manual analysis or automatic visual recognition to classify scene content? While there have been important advances in the area of computational photography to restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of improving visual appearance and recognition, which will be an enabling factor for the deployment of visual recognition tools in many real-world scenarios. To address this, we introduce the UG^2 dataset as a large-scale benchmark composed of video imagery captured under challenging conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition. Furthermore, we propose a set of metrics to evaluate the joint improvement of such tasks as well as individual algorithmic advances, including a novel psychophysics-based evaluation regime for human assessment and a realistic set of quantitative measures for object recognition performance. We introduce six new algorithms for image restoration or enhancement, which were created as part of the IARPA sponsored UG^2 Challenge workshop held at CVPR 2018. Under the proposed evaluation regime, we present an in-depth analysis of these algorithms and a host of deep learning-based and classic baseline approaches. From the observed results, it is evident that we are in the early days of building a bridge between computational photography and visual recognition, leaving many opportunities for innovation in this area.Comment: CVPR Prize Challenge: http://www.ug2challenge.or

    Robust object extraction from remote sensing data

    Full text link
    The extraction of object outlines has been a research topic during the last decades. In spite of advances in photogrammetry, remote sensing and computer vision, this task remains challenging due to object and data complexity. The development of object extraction approaches is promoted through publically available benchmark datasets and evaluation frameworks. Many aspects of performance evaluation have already been studied. This study collects the best practices from literature, puts the various aspects in one evaluation framework, and demonstrates its usefulness to a case study on mapping object outlines. The evaluation framework includes five dimensions: the robustness to changes in resolution, input, location, parameters, and application. Examples for investigating these dimensions are provided, as well as accuracy measures for their qualitative analysis. The measures consist of time efficiency and a procedure for line-based accuracy assessment regarding quantitative completeness and spatial correctness. The delineation approach to which the evaluation framework is applied, was previously introduced and is substantially improved in this study.Comment: unpublished study (15 pages

    Visual enhancement of Cone-beam CT by use of CycleGAN

    Full text link
    Cone-beam computed tomography (CBCT) offers advantages over conventional fan-beam CT in that it requires a shorter time and less exposure to obtain images. CBCT has found a wide variety of applications in patient positioning for image-guided radiation therapy, extracting radiomic information for designing patient-specific treatment, and computing fractional dose distributions for adaptive radiation therapy. However, CBCT images suffer from low soft-tissue contrast, noise, and artifacts compared to conventional fan-beam CT images. Therefore, it is essential to improve the image quality of CBCT. In this paper, we propose a synthetic approach to translate CBCT images with deep neural networks. Our method requires only unpaired and unaligned CBCT images and planning fan-beam CT (PlanCT) images for training. Once trained, 3D reconstructed CBCT images can be directly translated to high-quality PlanCT-like images. We demonstrate the effectiveness of our method with images obtained from 24 prostate patients, and we provide a statistical and visual comparison. The image quality of the translated images shows substantial improvement in voxel values, spatial uniformity, and artifact suppression compared to those of the original CBCT. The anatomical structures of the original CBCT images were also well preserved in the translated images. Our method enables more accurate adaptive radiation therapy, and opens up new applications for CBCT that hinge on high-quality images

    Learn to Evaluate Image Perceptual Quality Blindly from Statistics of Self-similarity

    Full text link
    Among the various image quality assessment (IQA) tasks, blind IQA (BIQA) is particularly challenging due to the absence of knowledge about the reference image and distortion type. Features based on natural scene statistics (NSS) have been successfully used in BIQA, while the quality relevance of the feature plays an essential role to the quality prediction performance. Motivated by the fact that the early processing stage in human visual system aims to remove the signal redundancies for efficient visual coding, we propose a simple but very effective BIQA method by computing the statistics of self-similarity (SOS) in an image. Specifically, we calculate the inter-scale similarity and intra-scale similarity of the distorted image, extract the SOS features from these similarities, and learn a regression model to map the SOS features to the subjective quality score. Extensive experiments demonstrate very competitive quality prediction performance and generalization ability of the proposed SOS based BIQA method

    Generative Adversarial Network in Medical Imaging: A Review

    Full text link
    Generative adversarial networks have gained a lot of attention in the computer vision community due to their capability of data generation without explicitly modelling the probability density function. The adversarial loss brought by the discriminator provides a clever way of incorporating unlabeled samples into training and imposing higher order consistency. This has proven to be useful in many cases, such as domain adaptation, data augmentation, and image-to-image translation. These properties have attracted researchers in the medical imaging community, and we have seen rapid adoption in many traditional and novel applications, such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. Based on our observations, this trend will continue and we therefore conducted a review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.Comment: 24 pages; v4; added missing references from before Jan 1st 2019; accepted to MedI

    A Variational U-Net for Conditional Appearance and Shape Generation

    Full text link
    Deep generative models have demonstrated great performance in image synthesis. However, results deteriorate in case of spatial deformations, since they generate images of objects directly, rather than modeling the intricate interplay of their inherent shape and appearance. We present a conditional U-Net for shape-guided image generation, conditioned on the output of a variational autoencoder for appearance. The approach is trained end-to-end on images, without requiring samples of the same object with varying pose or appearance. Experiments show that the model enables conditional image generation and transfer. Therefore, either shape or appearance can be retained from a query image, while freely altering the other. Moreover, appearance can be sampled due to its stochastic latent representation, while preserving shape. In quantitative and qualitative experiments on COCO, DeepFashion, shoes, Market-1501 and handbags, the approach demonstrates significant improvements over the state-of-the-art.Comment: CVPR 2018 (Spotlight). Project Page at https://compvis.github.io/vunet

    Face Recognition in Low Quality Images: A Survey

    Full text link
    Low-resolution face recognition (LRFR) has received increasing attention over the past few years. Its applications lie widely in the real-world environment when high-resolution or high-quality images are hard to capture. One of the biggest demands for LRFR technologies is video surveillance. As the the number of surveillance cameras in the city increases, the videos that captured will need to be processed automatically. However, those videos or images are usually captured with large standoffs, arbitrary illumination condition, and diverse angles of view. Faces in these images are generally small in size. Several studies addressed this problem employed techniques like super resolution, deblurring, or learning a relationship between different resolution domains. In this paper, we provide a comprehensive review of approaches to low-resolution face recognition in the past five years. First, a general problem definition is given. Later, systematically analysis of the works on this topic is presented by catogory. In addition to describing the methods, we also focus on datasets and experiment settings. We further address the related works on unconstrained low-resolution face recognition and compare them with the result that use synthetic low-resolution data. Finally, we summarized the general limitations and speculate a priorities for the future effort.Comment: There are some mistakes addressing in this paper which will be misleading to the reader and we wont have a new version in short time. We will resubmit once it is being corecte

    Learning to Inpaint for Image Compression

    Full text link
    We study the design of deep architectures for lossy image compression. We present two architectural recipes in the context of multi-stage progressive encoders and empirically demonstrate their importance on compression performance. Specifically, we show that: (a) predicting the original image data from residuals in a multi-stage progressive architecture facilitates learning and leads to improved performance at approximating the original content and (b) learning to inpaint (from neighboring image pixels) before performing compression reduces the amount of information that must be stored to achieve a high-quality approximation. Incorporating these design choices in a baseline progressive encoder yields an average reduction of over 60%60\% in file size with similar quality compared to the original residual encoder.Comment: Published in Advances in Neural Information Processing Systems (NIPS 2017

    Fidelity Imposed Network Edit (FINE) for Solving Ill-Posed Image Reconstruction

    Full text link
    Deep learning (DL) is increasingly used to solve ill-posed inverse problems in imaging, such as reconstruction from noisy or incomplete data, as DL offers advantages over explicit image feature extractions in defining the needed prior. However, DL typically does not incorporate the precise physics of data generation or data fidelity. Instead, DL networks are trained to output some average response to an input. Consequently, DL image reconstruction contains errors, and may perform poorly when the test data deviates significantly from the training data, such as having new pathological features. To address this lack of data fidelity problem in DL image reconstruction, a novel approach, which we call fidelity-imposed network edit (FINE), is proposed. In FINE, a pre-trained prior network's weights are modified according to the physical model, on a test case. Our experiments demonstrate that FINE can achieve superior performance in two important inverse problems in neuroimaging: quantitative susceptibility mapping (QSM) and under-sampled reconstruction in MRI

    Applying Visual Domain Style Transfer and Texture Synthesis Techniques to Audio - Insights and Challenges

    Full text link
    Style transfer is a technique for combining two images based on the activations and feature statistics in a deep learning neural network architecture. This paper studies the analogous task in the audio domain and takes a critical look at the problems that arise when adapting the original vision-based framework to handle spectrogram representations. We conclude that CNN architectures with features based on 2D representations and convolutions are better suited for visual images than for time-frequency representations of audio. Despite the awkward fit, experiments show that the Gram matrix determined "style" for audio is more closely aligned with timbral signatures without temporal structure whereas network layer activity determining audio "content" seems to capture more of the pitch and rhythmic structures. We shed insight on several reasons for the domain differences with illustrative examples. We motivate the use of several types of one-dimensional CNNs that generate results that are better aligned with intuitive notions of audio texture than those based on existing architectures built for images. These ideas also prompt an exploration of audio texture synthesis with architectural variants for extensions to infinite textures, multi-textures, parametric control of receptive fields and the constant-Q transform as an alternative frequency scaling for the spectrogram.Comment: Post-peer-review, pre-copyedit version of an article to be published in Neural Computing and Applications. 11 figure
    • …
    corecore