1,267 research outputs found

    Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations

    Full text link
    We study algorithms for online linear optimization in Hilbert spaces, focusing on the case where the player is unconstrained. We develop a novel characterization of a large class of minimax algorithms, recovering, and even improving, several previous results as immediate corollaries. Moreover, using our tools, we develop an algorithm that provides a regret bound of O(UTlog(UTlog2T+1))\mathcal{O}\Big(U \sqrt{T \log(U \sqrt{T} \log^2 T +1)}\Big), where UU is the L2L_2 norm of an arbitrary comparator and both TT and UU are unknown to the player. This bound is optimal up to loglogT\sqrt{\log \log T} terms. When TT is known, we derive an algorithm with an optimal regret bound (up to constant factors). For both the known and unknown TT case, a Normal approximation to the conditional value of the game proves to be the key analysis tool.Comment: Proceedings of the 27th Annual Conference on Learning Theory (COLT 2014

    A Modern Introduction to Online Learning

    Full text link
    In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.Comment: Fixed more typos, added more history bits, added local norms bounds for OMD and FTR

    Highly-Smooth Zero-th Order Online Optimization Vianney Perchet

    Get PDF
    The minimization of convex functions which are only available through partial and noisy information is a key methodological problem in many disciplines. In this paper we consider convex optimization with noisy zero-th order information, that is noisy function evaluations at any desired point. We focus on problems with high degrees of smoothness, such as logistic regression. We show that as opposed to gradient-based algorithms, high-order smoothness may be used to improve estimation rates, with a precise dependence of our upper-bounds on the degree of smoothness. In particular, we show that for infinitely differentiable functions, we recover the same dependence on sample size as gradient-based algorithms, with an extra dimension-dependent factor. This is done for both convex and strongly-convex functions, with finite horizon and anytime algorithms. Finally, we also recover similar results in the online optimization setting.Comment: Conference on Learning Theory (COLT), Jun 2016, New York, United States. 201
    corecore