42,941 research outputs found

    Comparison of beam generation techniques using a phase only spatial light modulator

    Get PDF
    Whether in art or for QR codes, images have proven to be both powerful and efficient carriers of information. Spatial light modulators allow an unprecedented level of control over the generation of optical fields by using digital holograms. There is no unique way of obtaining a desired light pattern however, leaving many competing methods for hologram generation. In this paper, we test six hologram generation techniques in the creation of a variety of modes as well as a photographic image: rating the methods according to obtained mode quality and power. All techniques compensate for a non-uniform mode profile of the input laser and incorporate amplitude scaling. We find that all methods perform well and stress the importance of appropriate spatial filtering. We expect these results to be of interest to those working in the contexts of microscopy, optical trapping or quantum image creation

    No-reference image quality assessment through the von Mises distribution

    Get PDF
    An innovative way of calculating the von Mises distribution (VMD) of image entropy is introduced in this paper. The VMD's concentration parameter and some fitness parameter that will be later defined, have been analyzed in the experimental part for determining their suitability as a image quality assessment measure in some particular distortions such as Gaussian blur or additive Gaussian noise. To achieve such measure, the local R\'{e}nyi entropy is calculated in four equally spaced orientations and used to determine the parameters of the von Mises distribution of the image entropy. Considering contextual images, experimental results after applying this model show that the best-in-focus noise-free images are associated with the highest values for the von Mises distribution concentration parameter and the highest approximation of image data to the von Mises distribution model. Our defined von Misses fitness parameter experimentally appears also as a suitable no-reference image quality assessment indicator for no-contextual images.Comment: 29 pages, 11 figure

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Measurement of Source Star Colors with the K2C9-CFHT Multi-color Microlensing Survey

    Get PDF
    K2 Campaign 9 (K2C9) was the first space-based microlensing parallax survey capable of measuring microlensing parallaxes of free-floating planet candidate microlensing events. Simultaneous to K2C9 observations we conducted the K2C9 Canada-France-Hawaii Telescope Multi-Color Microlensing Survey (K2C9-CFHT MCMS) in order to measure the colors of microlensing source stars to improve the accuracy of K2C9's parallax measurements. We describe the difference imaging photometry analysis of the K2C9-CFHT MCMS observations, and present the project's first data release. This includes instrumental difference flux lightcurves of 217 microlensing events identified by other microlensing surveys, reference image photometry calibrated to PanSTARRS data release 1 photometry, and tools to convert between instrumental and calibrated flux scales. We derive accurate analytic transformations between the PanSTARRS bandpasses and the Kepler bandpass, as well as angular diameter-color relations in the PanSTARRS bandpasses. To demonstrate the use of our data set, we analyze ground-based and K2 data of a short timescale microlensing event, OGLE-2016-BLG-0795. We find the event has a timescale tE=4.5±0.1t_{\rm E}=4.5 \pm 0.1~days and microlens parallax πE=0.12±0.03\pi_{\rm E}=0.12 \pm 0.03 or 0.97±0.040.97 \pm 0.04, subject to the standard satellite parallax degeneracy. We argue that the smaller value of the parallax is more likely, which implies that the lens is likely a stellar-mass object in the Galactic bulge as opposed to a super-Jupiter mass object in the Galactic disk.Comment: Submitted to PAS

    A new method to determine multi-angular reflectance factor from lightweight multispectral cameras with sky sensor in a target-less workflow applicable to UAV

    Full text link
    A new physically based method to estimate hemispheric-directional reflectance factor (HDRF) from lightweight multispectral cameras that have a downwelling irradiance sensor is presented. It combines radiometry with photogrammetric computer vision to derive geometrically and radiometrically accurate data purely from the images, without requiring reflectance targets or any other additional information apart from the imagery. The sky sensor orientation is initially computed using photogrammetric computer vision and revised with a non-linear regression comprising radiometric and photogrammetry-derived information. It works for both clear sky and overcast conditions. A ground-based test acquisition of a Spectralon target observed from different viewing directions and with different sun positions using a typical multispectral sensor configuration for clear sky and overcast showed that both the overall value and the directionality of the reflectance factor as reported in the literature were well retrieved. An RMSE of 3% for clear sky and up to 5% for overcast sky was observed

    AstraLux: the Calar Alto Lucky Imaging Camera

    Full text link
    AstraLux is the Lucky Imaging camera for the Calar Alto 2.2-m telescope, based on an electron-multiplying high speed CCD. By selecting only the best 1-10% of several thousand short exposure frames, AstraLux provides nearly diffraction limited imaging capabilities in the SDSS i' and z' filters over a field of view of 24x24 arcseconds. By choosing commercially available components wherever possible, the instrument could be built in short time and at comparably low cost. We present the instrument design, the data reduction pipeline, and summarise the performance and characteristicsComment: 12 pages, 7 figures, to appear in "Ground-based and Airborne Instrumentation for Astronomy II" SPIE conference, Marseille, 23-28 June 200

    Deformation compatibility in a single crystalline Ni superalloy

    Get PDF
    Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F, in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure
    • 

    corecore