519 research outputs found

    A Retinex-based Image Enhancement Scheme with Noise Aware Shadow-up Function

    Full text link
    This paper proposes a novel image contrast enhancement method based on both a noise aware shadow-up function and Retinex (retina and cortex) decomposition. Under low light conditions, images taken by digital cameras have low contrast in dark or bright regions. This is due to a limited dynamic range that imaging sensors have. For this reason, various contrast enhancement methods have been proposed. Our proposed method can enhance the contrast of images without not only over-enhancement but also noise amplification. In the proposed method, an image is decomposed into illumination layer and reflectance layer based on the retinex theory, and lightness information of the illumination layer is adjusted. A shadow-up function is used for preventing over-enhancement. The proposed mapping function, designed by using a noise aware histogram, allows not only to enhance contrast of dark region, but also to avoid amplifying noise, even under strong noise environments.Comment: To appear in IWAIT-IFMIA 201

    Blur-specific image quality assessment of microscopic hyperspectral images

    Get PDF
    Hyperspectral (HS) imaging (HSI) expands the number of channels captured within the electromagnetic spectrum with respect to regular imaging. Thus, microscopic HSI can improve cancer diagnosis by automatic classification of cells. However, homogeneous focus is difficult to achieve in such images, being the aim of this work to automatically quantify their focus for further image correction. A HS image database for focus assessment was captured. Subjective scores of image focus were obtained from 24 subjects and then correlated to state-of-the-art methods. Maximum Local Variation, Fast Image Sharpness block-based Method and Local Phase Coherence algorithms provided the best correlation results. With respect to execution time, LPC was the fastestBlur-specific image quality assessment of microscopic hyperspectral imagespublishedVersio

    Probabilistic Forecasting for On-line Operation of Urban Drainage Systems

    Get PDF

    Measuring the vulnerability of the Uruguayan population to vector-borne diseases via spatially hierarchical factor models

    Full text link
    We propose a model-based vulnerability index of the population from Uruguay to vector-borne diseases. We have available measurements of a set of variables in the census tract level of the 19 Departmental capitals of Uruguay. In particular, we propose an index that combines different sources of information via a set of micro-environmental indicators and geographical location in the country. Our index is based on a new class of spatially hierarchical factor models that explicitly account for the different levels of hierarchy in the country, such as census tracts within the city level, and cities in the country level. We compare our approach with that obtained when data are aggregated in the city level. We show that our proposal outperforms current and standard approaches, which fail to properly account for discrepancies in the region sizes, for example, number of census tracts. We also show that data aggregation can seriously affect the estimation of the cities vulnerability rankings under benchmark models.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS497 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore