2,698 research outputs found

    Real-time Assessment of Right and Left Ventricular Volumes and Function in Children Using High Spatiotemporal Resolution Spiral bSSFP with Compressed Sensing

    Get PDF
    Background: Real-time (RT) assessment of ventricular volumes and function enables data acquisition during free-breathing. However, in children the requirement for high spatiotemporal resolution requires accelerated imaging techniques. In this study, we implemented a novel RT bSSFP spiral sequence reconstructed using Compressed Sensing (CS) and validated it against the breath-hold (BH) reference standard for assessment of ventricular volumes in children with heart disease. Methods: Data was acquired in 60 children. Qualitative image scoring and evaluation of ventricular volumes was performed by 3 clinical cardiac MR specialists. 30 cases were reassessed for intra-observer variability, and the other 30 cases for inter-observer variability. Results: Spiral RT images were of good quality, however qualitative scores reflected more residual artefact than standard BH images and slightly lower edge definition. Quantification of Left Ventricular (LV) and Right Ventricular (RV) metrics showed excellent correlation between the techniques with narrow limits of agreement. However, we observed small but statistically significant overestimation of LV end-diastolic volume, underestimation of LV end-systolic volume, as well as a small overestimation of RV stroke volume and ejection fraction using the RT imaging technique. No difference in inter-observer or intra-observer variability were observed between the BH and RT sequences. Conclusions: Real-time bSSFP imaging using spiral trajectories combined with a compressed sensing reconstruction is feasible. The main benefit is that it can be acquired during free breathing. However, another important secondary benefit is that a whole ventricular stack can be acquired in ~20 seconds, as opposed to ~6 minutes for standard BH imaging. Thus, this technique holds the potential to significantly shorten MR scan times in children

    Assessment of a Neural Network-Based Subspace MRI Reconstruction Method for Myocardial T1 Mapping Using Inversion-Recovery Radial FLASH

    Get PDF
    openLa mappatura T1 del miocardio si è affermata come un promettente biomarker per la caratterizzazione non invasiva del muscolo cardiaco nell'ambito della risonanza magnetica cardiovascolare. Questo approccio ha il potenziale di sostituire la biopsia nella diagnosi di diverse condizioni patologiche del miocardio, come la fibrosi, l'accumulo di ferro o amiloidosi. Negli ultimi anni, il deep learning ha suscitato un crescente interesse per la ricostruzione delle immagini, portando a notevoli miglioramenti rispetto alle tecniche che richiedono la predefinizione dei parametri di regolarizzazione da parte dell'operatore, rendendo così il processo parzialmente soggettivo. Il miglioramento è reso possibile grazie alla capacità delle reti neurali di apprendere automaticamente le proprietà presenti nelle immagini del dataset utilizzato per il training. La presente tesi si focalizza sull'analisi di un nuovo metodo di ricostruzione subspaziale delle immagini di risonanza magnetica basato su reti neurali per la mappatura T1 del miocardio, che utilizza una sequenza chiamata single-shot inversion-recovery radial FLASH. È stata impiegata una rete neurale nota come NLINV-Net, la quale trae ispirazione dalla tecnica di ricostruzione delle immagini NLINV. NLINV-Net risolve il problema inverso non lineare per il parallel imaging srotolando l'iteratively regularized Gauss-Newton method e incorporando nel processo termini di regolarizzazione basati su reti neurali. La rete neurale ha appreso le correlazioni esistenti tra i singoli parametri codificati dalla sequenza FLASH in modo auto-supervisionato, ovvero senza richiedere un riferimento esterno. NLINV-Net ha dimostrato di superare NLINV per la precisione dei valori T1, producendo mappe T1 di alta qualità. Le mappe ottenute con NLINV-Net sono paragonabili a quelle ottenute con un altro metodo di riferimento, che combina parallel imaging e compressed sensing utilizzando la regolarizzazione l1-Wavelet nella risoluzione del problema lineare inverso per il parallel imaging. Il vantaggio di NLINV-Net rispetto al suddetto metodo di appoggio è quello di sbarazzarsi della predefinizione dei parametri di regolarizzazione da parte dell'operatore. In questo modo, NLINV-Net fornisce una solida base per la mappatura T1 del miocardio utilizzando la sequenza single-shot inversion-recovery radial FLASH.In cardiovascular MRI, myocardial T1 mapping provides an imaging biomarker for the non-invasive characterization of the myocardial tissue, with the potential to replace invasive biopsy for the diagnosis of several pathological heart muscle conditions such as fibrosis, iron overload, or amyloid infiltration. Over the last few years, deep learning has become increasingly appealing for image reconstruction to improve upon the commonly employed user-dependent regularization terms by automatically learning image properties from the training dataset. This thesis investigates a novel neural network-based subspace MRI reconstruction method for myocardial T1 mapping, which uses a single-shot inversion-recovery radial FLASH sequence. The neural network utilized in this study is NLINV-Net, which draws inspiration from the NLINV image reconstruction technique. NLINV-Net addresses the nonlinear inverse problem for parallel imaging by unrolling the iteratively regularized Gauss-Newton method and incorporating neural network-based regularization terms into the process. It learned in a self-supervised fashion, i.e., without a reference, correlations between the individual parameters encoded with the FLASH sequence, and, consequently, a well-tuned regularization. NLINV-Net outperformed NLINV in terms of T1 precision and generated high-quality T1 maps. The T1 maps computed using NLINV-Net were comparable to the ones obtained using another baseline method, which combines parallel imaging and compressed sensing using the l1-Wavelet regularization when solving the linear inverse problem for parallel imaging. In this case, the advantage of NLINV-Net is that it removes the subjective regularization parameter tuning that comes with the forenamed benchmark method. Thus, it provides an excellent basis for myocardial T1 mapping using a single-shot inversion-recovery radial FLASH sequence

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Development of novel magnetic resonance methods for advanced parametric mapping of the right ventricle

    Get PDF
    The detection of diffuse fibrosis is of particular interest in congenital heart disease patients, including repaired Tetralogy of Fallot (rTOF), as clinical outcome is linked to the accurate identification of diffuse fibrosis. In the Left Ventricular (LV) myocardium native T1 mapping and Diffusion Tensor Cardiac Magnetic Resonance (DT-CMR) are promising approaches for detection of diffuse fibrosis. In the Right Ventricle (RV) current techniques are limited due to the thinner, mobile and complex shaped compact myocardium. This thesis describes technical development of RV tissue characterisation methods. An interleaved variable density spiral DT-CMR method was implemented on a clinical 3T scanner allowing both ex and in vivo imaging. A range of artefact corrections were implemented and tested (gradient timing delays, off-resonance and T2* corrections). The off- resonance and T2* corrections were evaluated using computational simulation demonstrating that for in vivo acquisitions, off-resonance correction is essential. For the first-time high-resolution Stimulated Echo Acquisition Mode (STEAM) DT-CMR data was acquired in both healthy and rTOF ex-vivo hearts using an interleaved spiral trajectory and was shown to outperform single-shot EPI methods. In vivo the first DT-CMR data was shown from the RV using both an EPI and an interleaved spiral sequence. Both sequences provided were reproducible in healthy volunteers. Results suggest that the RV conformation of cardiomyocytes differs from the known structure in the LV. A novel STEAM-SAturation-recovery Single-sHot Acquisition (SASHA) sequence allowed the acquisition of native T1 data in the RV. The excellent blood and fat suppression provided by STEAM is leveraged to eliminate partial fat and blood signal more effectively than Modified Look-Locker Imaging (MOLLI) sequences. STEAM-SASHA T1 was validated in a phantom showing more accurate results in the native myocardial T1 range than MOLLI. STEAM-SASHA demonstrated good reproducibility in healthy volunteers and initial promising results in a single rTOF patient.Open Acces

    QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms

    Full text link
    [EN] Even though QR-factorization of the system matrix for tomographic devices has been already used for medical imaging, to date, no satisfactory solution has been found for solving large linear systems, such as those used in computed tomography (CT) (in the order of 106 equations). In CT, the Feldkamp, Davis, and Kress back projection algorithm (FDK) and iterative methods like conjugate gradient (CG) are the standard methods used for image reconstruction. As the image reconstruction problem can be modeled by a large linear system of equations, QR-factorization of the system matrix could be used to solve this system. Current advances in computer science enable the use of direct methods for solving such a large linear system. The QR-factorization is a numerically stable direct method for solving linear systems of equations, which is beginning to emerge as an alternative to traditional methods, bringing together the best from traditional methods. QR-factorization was chosen because the core of the algorithm, from the computational cost point of view, is precalculated and stored only once for a given CT system, and from then on, each image reconstruction only involves a backward substitution process and the product of a vector by a matrix. Image quality assessment was performed comparing contrast to noise ratio and noise power spectrum; performances regarding sharpness were evaluated by the reconstruction of small structures using data measured from a small animal 3-D CT. Comparisons of QR-factorization with FDK and CG methods show that QR-factorization is able to reconstruct more detailed images for a fixed voxel size.This work was supported by the Spanish Government under Grant TEC2016-79884-C2 and Grant RTC-2016-5186-1.Rodríguez-Álvarez, M.; Sánchez, F.; Soriano Asensi, A.; Moliner Martínez, L.; Sánchez Góez, S.; Benlloch Baviera, JM. (2018). QR-Factorization Algorithm for Computed Tomography (CT): Comparison With FDK and Conjugate Gradient (CG) Algorithms. IEEE Transactions on Radiation and Plasma Medical Sciences. 2(5):459-469. https://doi.org/10.1109/TRPMS.2018.2843803S4594692

    Motion-Corrected Simultaneous Cardiac PET-MR Imaging

    Get PDF

    Rapid phase-contrast magnetic resonance imaging using spiral trajectories and parallel imaging

    Get PDF
    Phase contrast (PC) MRI is a proven method of measuring blood flow in the clinical environment. Traditionally, PCMR data is acquired using cardiac gated Cartesian sequences. However, these sequences are time consuming and difficult to perform in patients with irregular heart rates. The work of my thesis covers three alternative PC sequences, all using undersampled spiral sequences with SENSE reconstruction algorithms. The first piece of work investigates real-time spiral PCMR. The spiral flow sequence was validated at rest by comparing stroke volumes in the aorta of healthy volunteers, against a retrospectively gated Cartesian sequence. By combining flow data with simultaneous blood pressure measurements during exercise, this sequence was used to quantify the hemodynamic response to physical stress. The second piece of work investigates improvements in spatial or temporal resolution for real-time PCMR, by splitting the acquisition of flow-compensated and flow-encoded data into separate short blocks. The data is then retrospectively matched in cardio-respiratory space, to remove background phase offsets. This sequence was validated (at rest) in an adult population. The improved spatial resolution was shown to provide more accurate flow measurements than standard real-time flow measurements, in a paediatric population. The third piece of work investigates prospectively triggered spiral PCMR to achieve high spatio-temporal resolution, within a short breath-hold. Flow volumes, regurgitation fraction and shunt ratios were compared from a high spatial-resolution, free breathing retrospectively gated Cartesian sequence with 3 averages (~2.5 minute scan time), a low spatial-resolution breath-hold retrospectively gated Cartesian sequence (~20 second scan time), and the (high spatial-resolution) prospectively triggered spiral sequence (~6 second scan time). It was shown that accurate flow measurements can be made in the aorta, pulmonary artery and pulmonary branches, within manageable breath-hold times for children and sick adults. This sequence may improve patient compliance and increase patient throughput
    corecore