17,448 research outputs found

    Image blur estimation based on the average cone of ratio in the wavelet domain

    Get PDF
    In this paper, we propose a new algorithm for objective blur estimation using wavelet decomposition. The central idea of our method is to estimate blur as a function of the center of gravity of the average cone ratio (ACR) histogram. The key properties of ACR are twofold: it is powerful in estimating local edge regularity, and it is nearly insensitive to noise. We use these properties to estimate the blurriness of the image, irrespective of the level of noise. In particular, the center of gravity of the ACR histogram is a blur metric. The method is applicable both in case where the reference image is available and when there is no reference. The results demonstrate a consistent performance of the proposed metric for a wide class of natural images and in a wide range of out of focus blurriness. Moreover, the proposed method shows a remarkable insensitivity to noise compared to other wavelet domain methods

    Detection and estimation of image blur

    Get PDF
    The airborne imagery consisting of infrared (IR) and multispectral (MSI) images collected in 2009 under airborne mine and minefield detection program by Night Vision and Electronic Sensors Directorate (NVESD) was found to be severely blurred due to relative motion between the camera and the object and some of them with defocus blurs due to various reasons. Automated detection of blur due to motion and defocus blurs and the estimation of blur like point spread function for severely degraded images is an important task for processing and detection in such airborne imagery. Although several full reference and reduced reference methods are available in the literature, using no reference methods are desirable because there was no information of the degradation function and the original image data. In this thesis, three no reference algorithms viz. Haar wavelet (HAAR), modified Haar using singular value decomposition (SVD), and intentional blurring pixel difference (IBD) for blur detection are compared and their performance is qualified based on missed detections and false alarms. Three human subjects were chosen to perform subjective testing on randomly selected data sets and the truth for each frame was obtained from majority voting. The modified Haar algorithm (SVD) resulted in the least number of missed detections and least number of false alarms. This thesis also evaluates several methods for estimating the point spread function (PSF) of these degraded images. The Auto-correlation function (ACF), Hough transform (Hough) and steer Gaussian filter (SGF) based methods were tested on several synthetically motion blurred images and further validated on naturally blurred images. Statistics of pixel error estimate using these methods were computed based on 8640 artificially blurred image frames --Abstract, page iii

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm

    Plant Seed Identification

    Get PDF
    Plant seed identification is routinely performed for seed certification in seed trade, phytosanitary certification for the import and export of agricultural commodities, and regulatory monitoring, surveillance, and enforcement. Current identification is performed manually by seed analysts with limited aiding tools. Extensive expertise and time is required, especially for small, morphologically similar seeds. Computers are, however, especially good at recognizing subtle differences that humans find difficult to perceive. In this thesis, a 2D, image-based computer-assisted approach is proposed. The size of plant seeds is extremely small compared with daily objects. The microscopic images of plant seeds are usually degraded by defocus blur due to the high magnification of the imaging equipment. It is necessary and beneficial to differentiate the in-focus and blurred regions given that only sharp regions carry distinctive information usually for identification. If the object of interest, the plant seed in this case, is in- focus under a single image frame, the amount of defocus blur can be employed as a cue to separate the object and the cluttered background. If the defocus blur is too strong to obscure the object itself, sharp regions of multiple image frames acquired at different focal distance can be merged together to make an all-in-focus image. This thesis describes a novel non-reference sharpness metric which exploits the distribution difference of uniform LBP patterns in blurred and non-blurred image regions. It runs in realtime on a single core cpu and responses much better on low contrast sharp regions than the competitor metrics. Its benefits are shown both in defocus segmentation and focal stacking. With the obtained all-in-focus seed image, a scale-wise pooling method is proposed to construct its feature representation. Since the imaging settings in lab testing are well constrained, the seed objects in the acquired image can be assumed to have measureable scale and controllable scale variance. The proposed method utilizes real pixel scale information and allows for accurate comparison of seeds across scales. By cross-validation on our high quality seed image dataset, better identification rate (95%) was achieved compared with pre- trained convolutional-neural-network-based models (93.6%). It offers an alternative method for image based identification with all-in-focus object images of limited scale variance. The very first digital seed identification tool of its kind was built and deployed for test in the seed laboratory of Canadian food inspection agency (CFIA). The proposed focal stacking algorithm was employed to create all-in-focus images, whereas scale-wise pooling feature representation was used as the image signature. Throughput, workload, and identification rate were evaluated and seed analysts reported significantly lower mental demand (p = 0.00245) when using the provided tool compared with manual identification. Although the identification rate in practical test is only around 50%, I have demonstrated common mistakes that have been made in the imaging process and possible ways to deploy the tool to improve the recognition rate
    • …
    corecore