735 research outputs found

    Parallel Chip Firing Game associated with n-cube orientations

    Full text link
    We study the cycles generated by the chip firing game associated with n-cube orientations. We show the existence of the cycles generated by parallel evolutions of even lengths from 2 to 2n2^n on HnH_n (n >= 1), and of odd lengths different from 3 and ranging from 1 to 2n112^{n-1}-1 on HnH_n (n >= 4)

    The chip-firing game

    Get PDF

    The approach to criticality in sandpiles

    Get PDF
    A popular theory of self-organized criticality relates the critical behavior of driven dissipative systems to that of systems with conservation. In particular, this theory predicts that the stationary density of the abelian sandpile model should be equal to the threshold density of the corresponding fixed-energy sandpile. This "density conjecture" has been proved for the underlying graph Z. We show (by simulation or by proof) that the density conjecture is false when the underlying graph is any of Z^2, the complete graph K_n, the Cayley tree, the ladder graph, the bracelet graph, or the flower graph. Driven dissipative sandpiles continue to evolve even after a constant fraction of the sand has been lost at the sink. These results cast doubt on the validity of using fixed-energy sandpiles to explore the critical behavior of the abelian sandpile model at stationarity.Comment: 30 pages, 8 figures, long version of arXiv:0912.320

    Lock-in Problem for Parallel Rotor-router Walks

    Get PDF
    The rotor-router model, also called the Propp machine, was introduced as a deterministic alternative to the random walk. In this model, a group of identical tokens are initially placed at nodes of the graph. Each node maintains a cyclic ordering of the outgoing arcs, and during consecutive turns the tokens are propagated along arcs chosen according to this ordering in round-robin fashion. The behavior of the model is fully deterministic. Yanovski et al.(2003) proved that a single rotor-router walk on any graph with m edges and diameter DD stabilizes to a traversal of an Eulerian circuit on the set of all 2m directed arcs on the edge set of the graph, and that such periodic behaviour of the system is achieved after an initial transient phase of at most 2mD steps. The case of multiple parallel rotor-routers was studied experimentally, leading Yanovski et al. to the conjecture that a system of k \textgreater{} 1 parallel walks also stabilizes with a period of length at most 2m2m steps. In this work we disprove this conjecture, showing that the period of parallel rotor-router walks can in fact, be superpolynomial in the size of graph. On the positive side, we provide a characterization of the periodic behavior of parallel router walks, in terms of a structural property of stable states called a subcycle decomposition. This property provides us the tools to efficiently detect whether a given system configuration corresponds to the transient or to the limit behavior of the system. Moreover, we provide polynomial upper bounds of O(m4D2+mDlogk)O(m^4 D^2 + mD \log k) and O(m5k2)O(m^5 k^2) on the number of steps it takes for the system to stabilize. Thus, we are able to predict any future behavior of the system using an algorithm that takes polynomial time and space. In addition, we show that there exists a separation between the stabilization time of the single-walk and multiple-walk rotor-router systems, and that for some graphs the latter can be asymptotically larger even for the case of k=2k = 2 walks

    Abelian networks IV. Dynamics of nonhalting networks

    Full text link
    An abelian network is a collection of communicating automata whose state transitions and message passing each satisfy a local commutativity condition. This paper is a continuation of the abelian networks series of Bond and Levine (2016), for which we extend the theory of abelian networks that halt on all inputs to networks that can run forever. A nonhalting abelian network can be realized as a discrete dynamical system in many different ways, depending on the update order. We show that certain features of the dynamics, such as minimal period length, have intrinsic definitions that do not require specifying an update order. We give an intrinsic definition of the \emph{torsion group} of a finite irreducible (halting or nonhalting) abelian network, and show that it coincides with the critical group of Bond and Levine (2016) if the network is halting. We show that the torsion group acts freely on the set of invertible recurrent components of the trajectory digraph, and identify when this action is transitive. This perspective leads to new results even in the classical case of sinkless rotor networks (deterministic analogues of random walks). In Holroyd et. al (2008) it was shown that the recurrent configurations of a sinkless rotor network with just one chip are precisely the unicycles (spanning subgraphs with a unique oriented cycle, with the chip on the cycle). We generalize this result to abelian mobile agent networks with any number of chips. We give formulas for generating series such as n1rnzn=det(11zDA) \sum_{n \geq 1} r_n z^n = \det (\frac{1}{1-z}D - A ) where rnr_n is the number of recurrent chip-and-rotor configurations with nn chips; DD is the diagonal matrix of outdegrees, and AA is the adjacency matrix. A consequence is that the sequence (rn)n1(r_n)_{n \geq 1} completely determines the spectrum of the simple random walk on the network.Comment: 95 pages, 21 figure

    On the effects of firing memory in the dynamics of conjunctive networks

    Full text link
    Boolean networks are one of the most studied discrete models in the context of the study of gene expression. In order to define the dynamics associated to a Boolean network, there are several \emph{update schemes} that range from parallel or \emph{synchronous} to \emph{asynchronous.} However, studying each possible dynamics defined by different update schemes might not be efficient. In this context, considering some type of temporal delay in the dynamics of Boolean networks emerges as an alternative approach. In this paper, we focus in studying the effect of a particular type of delay called \emph{firing memory} in the dynamics of Boolean networks. Particularly, we focus in symmetric (non-directed) conjunctive networks and we show that there exist examples that exhibit attractors of non-polynomial period. In addition, we study the prediction problem consisting in determinate if some vertex will eventually change its state, given an initial condition. We prove that this problem is {\bf PSPACE}-complete
    corecore