3 research outputs found

    RoboCup 2019 AdultSize Winner NimbRo: Deep Learning Perception, In-Walk Kick, Push Recovery, and Team Play Capabilities

    Full text link
    Individual and team capabilities are challenged every year by rule changes and the increasing performance of the soccer teams at RoboCup Humanoid League. For RoboCup 2019 in the AdultSize class, the number of players (2 vs. 2 games) and the field dimensions were increased, which demanded for team coordination and robust visual perception and localization modules. In this paper, we present the latest developments that lead team NimbRo to win the soccer tournament, drop-in games, technical challenges and the Best Humanoid Award of the RoboCup Humanoid League 2019 in Sydney. These developments include a deep learning vision system, in-walk kicks, step-based push-recovery, and team play strategies

    Real-time Pose Estimation from Images for Multiple Humanoid Robots

    Full text link
    Pose estimation commonly refers to computer vision methods that recognize people's body postures in images or videos. With recent advancements in deep learning, we now have compelling models to tackle the problem in real-time. Since these models are usually designed for human images, one needs to adapt existing models to work on other creatures, including robots. This paper examines different state-of-the-art pose estimation models and proposes a lightweight model that can work in real-time on humanoid robots in the RoboCup Humanoid League environment. Additionally, we present a novel dataset called the HumanoidRobotPose dataset. The results of this work have the potential to enable many advanced behaviors for soccer-playing robots

    Analytic Bipedal Walking with Fused Angles and Corrective Actions in the Tilt Phase Space

    Full text link
    This work presents algorithms for the feedback-stabilised walking of bipedal humanoid robotic platforms, along with the underlying theoretical and sensorimotor frameworks required to achieve it. Bipedal walking is inherently complex and difficult to control due to the high level of nonlinearity and significant number of degrees of freedom of the concerned robots, the limited observability and controllability of the corresponding states, and the combination of imperfect actuation with less-than-ideal sensing. The presented methods deal with these issues in a multitude of ways, ranging from the development of an actuator control and feed-forward compensation scheme, to the inclusion of filtering in almost all of the gait stabilisation feedback pipelines. Two gaits are developed and investigated, the direct fused angle feedback gait, and the tilt phase controller. Both gaits follow the design philosophy of leveraging a semi-stable open-loop gait generator, and extending it through stabilising feedback via the means of so-called corrective actions. The idea of using corrective actions is to modify the generation of the open-loop joint waveforms in such a way that the balance of the robot is influenced and thereby ameliorated. Examples of such corrective actions include modifications of the arm swing and leg swing trajectories, the application of dynamic positional and rotational offsets to the hips and feet, and adjustments of the commanded step size and timing. Underpinning both feedback gaits and their corresponding gait generators are significant advances in the field of 3D rotation theory. These advances include the development of three novel rotation representations, the tilt angles, fused angles, and tilt phase space representations. All three of these representations are founded on a new innovative way of splitting 3D rotations into their respective yaw and tilt components.Comment: Extended version of PhD thesis (2020), 571 pages, 127 figures, 24 video
    corecore