1,815 research outputs found

    Learnable Differencing Center for Nighttime Depth Perception

    Full text link
    Depth completion is the task of recovering dense depth maps from sparse ones, usually with the help of color images. Existing image-guided methods perform well on daytime depth perception self-driving benchmarks, but struggle in nighttime scenarios with poor visibility and complex illumination. To address these challenges, we propose a simple yet effective framework called LDCNet. Our key idea is to use Recurrent Inter-Convolution Differencing (RICD) and Illumination-Affinitive Intra-Convolution Differencing (IAICD) to enhance the nighttime color images and reduce the negative effects of the varying illumination, respectively. RICD explicitly estimates global illumination by differencing two convolutions with different kernels, treating the small-kernel-convolution feature as the center of the large-kernel-convolution feature in a new perspective. IAICD softly alleviates local relative light intensity by differencing a single convolution, where the center is dynamically aggregated based on neighboring pixels and the estimated illumination map in RICD. On both nighttime depth completion and depth estimation tasks, extensive experiments demonstrate the effectiveness of our LDCNet, reaching the state of the art.Comment: 10 page

    Instance Segmentation in the Dark

    Full text link
    Existing instance segmentation techniques are primarily tailored for high-visibility inputs, but their performance significantly deteriorates in extremely low-light environments. In this work, we take a deep look at instance segmentation in the dark and introduce several techniques that substantially boost the low-light inference accuracy. The proposed method is motivated by the observation that noise in low-light images introduces high-frequency disturbances to the feature maps of neural networks, thereby significantly degrading performance. To suppress this ``feature noise", we propose a novel learning method that relies on an adaptive weighted downsampling layer, a smooth-oriented convolutional block, and disturbance suppression learning. These components effectively reduce feature noise during downsampling and convolution operations, enabling the model to learn disturbance-invariant features. Furthermore, we discover that high-bit-depth RAW images can better preserve richer scene information in low-light conditions compared to typical camera sRGB outputs, thus supporting the use of RAW-input algorithms. Our analysis indicates that high bit-depth can be critical for low-light instance segmentation. To mitigate the scarcity of annotated RAW datasets, we leverage a low-light RAW synthetic pipeline to generate realistic low-light data. In addition, to facilitate further research in this direction, we capture a real-world low-light instance segmentation dataset comprising over two thousand paired low/normal-light images with instance-level pixel-wise annotations. Remarkably, without any image preprocessing, we achieve satisfactory performance on instance segmentation in very low light (4~\% AP higher than state-of-the-art competitors), meanwhile opening new opportunities for future research.Comment: Accepted by International Journal of Computer Vision (IJCV) 202

    Lighting up NeRF via Unsupervised Decomposition and Enhancement

    Full text link
    Neural Radiance Field (NeRF) is a promising approach for synthesizing novel views, given a set of images and the corresponding camera poses of a scene. However, images photographed from a low-light scene can hardly be used to train a NeRF model to produce high-quality results, due to their low pixel intensities, heavy noise, and color distortion. Combining existing low-light image enhancement methods with NeRF methods also does not work well due to the view inconsistency caused by the individual 2D enhancement process. In this paper, we propose a novel approach, called Low-Light NeRF (or LLNeRF), to enhance the scene representation and synthesize normal-light novel views directly from sRGB low-light images in an unsupervised manner. The core of our approach is a decomposition of radiance field learning, which allows us to enhance the illumination, reduce noise and correct the distorted colors jointly with the NeRF optimization process. Our method is able to produce novel view images with proper lighting and vivid colors and details, given a collection of camera-finished low dynamic range (8-bits/channel) images from a low-light scene. Experiments demonstrate that our method outperforms existing low-light enhancement methods and NeRF methods.Comment: ICCV 2023. Project website: https://whyy.site/paper/llner

    I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images

    Full text link
    Image dehazing has become an important computational imaging topic in the recent years. However, due to the lack of ground truth images, the comparison of dehazing methods is not straightforward, nor objective. To overcome this issue we introduce a new dataset -named I-HAZE- that contains 35 image pairs of hazy and corresponding haze-free (ground-truth) indoor images. Different from most of the existing dehazing databases, hazy images have been generated using real haze produced by a professional haze machine. For easy color calibration and improved assessment of dehazing algorithms, each scene include a MacBeth color checker. Moreover, since the images are captured in a controlled environment, both haze-free and hazy images are captured under the same illumination conditions. This represents an important advantage of the I-HAZE dataset that allows us to objectively compare the existing image dehazing techniques using traditional image quality metrics such as PSNR and SSIM

    Lightweight HDR Camera ISP for Robust Perception in Dynamic Illumination Conditions via Fourier Adversarial Networks

    Full text link
    The limited dynamic range of commercial compact camera sensors results in an inaccurate representation of scenes with varying illumination conditions, adversely affecting image quality and subsequently limiting the performance of underlying image processing algorithms. Current state-of-the-art (SoTA) convolutional neural networks (CNN) are developed as post-processing techniques to independently recover under-/over-exposed images. However, when applied to images containing real-world degradations such as glare, high-beam, color bleeding with varying noise intensity, these algorithms amplify the degradations, further degrading image quality. We propose a lightweight two-stage image enhancement algorithm sequentially balancing illumination and noise removal using frequency priors for structural guidance to overcome these limitations. Furthermore, to ensure realistic image quality, we leverage the relationship between frequency and spatial domain properties of an image and propose a Fourier spectrum-based adversarial framework (AFNet) for consistent image enhancement under varying illumination conditions. While current formulations of image enhancement are envisioned as post-processing techniques, we examine if such an algorithm could be extended to integrate the functionality of the Image Signal Processing (ISP) pipeline within the camera sensor benefiting from RAW sensor data and lightweight CNN architecture. Based on quantitative and qualitative evaluations, we also examine the practicality and effects of image enhancement techniques on the performance of common perception tasks such as object detection and semantic segmentation in varying illumination conditions.Comment: Accepted in BMVC 202

    Learning to Dehaze from Realistic Scene with A Fast Physics-based Dehazing Network

    Full text link
    Dehazing is a popular computer vision topic for long. A real-time dehazing method with reliable performance is highly desired for many applications such as autonomous driving. While recent learning-based methods require datasets containing pairs of hazy images and clean ground truth references, it is generally impossible to capture accurate ground truth in real scenes. Many existing works compromise this difficulty to generate hazy images by rendering the haze from depth on common RGBD datasets using the haze imaging model. However, there is still a gap between the synthetic datasets and real hazy images as large datasets with high-quality depth are mostly indoor and depth maps for outdoor are imprecise. In this paper, we complement the existing datasets with a new, large, and diverse dehazing dataset containing real outdoor scenes from High-Definition (HD) 3D movies. We select a large number of high-quality frames of real outdoor scenes and render haze on them using depth from stereo. Our dataset is more realistic than existing ones and we demonstrate that using this dataset greatly improves the dehazing performance on real scenes. In addition to the dataset, we also propose a light and reliable dehazing network inspired by the physics model. Our approach outperforms other methods by a large margin and becomes the new state-of-the-art method. Moreover, the light-weight design of the network enables our method to run at a real-time speed, which is much faster than other baseline methods

    Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement

    Full text link
    When enhancing low-light images, many deep learning algorithms are based on the Retinex theory. However, the Retinex model does not consider the corruptions hidden in the dark or introduced by the light-up process. Besides, these methods usually require a tedious multi-stage training pipeline and rely on convolutional neural networks, showing limitations in capturing long-range dependencies. In this paper, we formulate a simple yet principled One-stage Retinex-based Framework (ORF). ORF first estimates the illumination information to light up the low-light image and then restores the corruption to produce the enhanced image. We design an Illumination-Guided Transformer (IGT) that utilizes illumination representations to direct the modeling of non-local interactions of regions with different lighting conditions. By plugging IGT into ORF, we obtain our algorithm, Retinexformer. Comprehensive quantitative and qualitative experiments demonstrate that our Retinexformer significantly outperforms state-of-the-art methods on thirteen benchmarks. The user study and application on low-light object detection also reveal the latent practical values of our method. Code, models, and results are available at https://github.com/caiyuanhao1998/RetinexformerComment: ICCV 2023; The first Transformer-based method for low-light image enhancemen
    • …
    corecore