8,961 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Economic Development Potential through IP Telephony for Namibia

    Get PDF
    IP telephony, economic growth, telecommunications, ICT, Granger causality, Namibia

    The ISIS Project: Real Experience with a Fault Tolerant Programming System

    Get PDF
    The ISIS project has developed a distributed programming toolkit and a collection of higher level applications based on these tools. ISIS is now in use at more than 300 locations world-wise. The lessons (and surprises) gained from this experience with the real world are discussed

    Benefits and Challenges of Internet of Things for Telecommunication Networks

    Get PDF
    Recently, Internet of things (IoTs) has become the main issue in designing monitoring systems such as smart environments, smart cars, and smart wearable devices. IoTs has transformed the life of people to be more adaptable and intelligent. For example, in a healthcare monitoring system, using smart devices will improve the performance of doctors, nurses, patients, and the healthcare industry. The IoTs revolution is known as the fourth industrial revolution and would change the way humans interact with machines and lead the way to a high-technology machine-to-machine interaction. In fact, almost every device around us would be connected to Internet, collecting and exchanging data with other devices on the cloud. In this chapter, we will introduce the benefits of IoTs on telecommunication networks and its challenges to give a complete overview for researchers to know how to improve our life and society by building smart IoTs systems

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    A future-proof architecture for management and orchestration of multi-domain NextGen networks

    Get PDF
    The novel network slicing paradigm represents an effective turning point to operate future wireless networks. Available networking and computational resources may be shared across different (instantiations of) services tailored onto specific vertical needs, envisioned as the main infrastructure tenants. While such customization enables meeting advanced Key Performance Indicators (KPIs) introduced by upcoming 5G networks, advanced multi-tenancy approaches help to abate the cost of deploying and operating the network. However, the network slicing implementation requires a number of non-trivial practical considerations, including e.g. (i) how resource sharing operations are actually implemented, (ii) how involved parties establish the corresponding agreement to instantiate, operate and terminate such a sharing or, (iii) the design of functional modules and interfaces supporting these operations. In this paper, we present a novel framework that unveils proper answers to the above design challenges. While existing initiatives are typically limited to single-domain and single-owner scenarios, our framework overcomes these limitations by enlarging the administrative scope of the network deployments fostering different providers to collaborate so as to facilitate a larger set of resources even spread across multiple domains. Numerical evaluations confirm the effectiveness and efficiency of the presented solution.This work was supported in part by the 5G-MoNArch Project, in part by the Phase II of the 5th Generation Public Private Partnership (5G-PPP) Program, in part by the European Commission within the Horizon 2020 Framework Program under Grant 761445, in part by the 5G-MoNArch Project builds on the results of the 5G-PPP Phase I Project 5G-NORMA, and in part by the European Union Horizon 2020 Project 5G-CARMEN under Grant 825012. The work of UC3M has also received funding from the Horizon 2020 Programme under Grant 815074 - 5G EVE.Publicad

    The issues of enterprise growth in transition and post-transition period: the case of Polish 'Elektrim'

    Get PDF
    Case study of Polish company Elektrim illustrates the changing basis of growth of enterprises between the transition and post-transition periods. Elektrim grew primarily through conglomeration in the transition period. After the exhaustion of this mode of growth Elektrim has started to focus on a few core areas (telecoms, cables, energy). The strategic shift to telecommunications has been based on partnerships with foreign firms and it is likely that this will be the pattern in other areas. In this respect, the case of Elektrim shows the importance of internationalisation for the growth of enterprises in CEE. Based on the case study the paper draws several analytical issues: First, Elektrim's shift from conglomeration to focusing suggests that the institutional context, which drives firm strategy in post-socialist economies like Poland, is, perhaps, also changing. Second, in order to grow Elektrim is forced to enter into equity relationships and partnerships like with French Vivendi. This suggests that the possibilities for firm growth in post-socialist economies, like Poland, through generic expansion are still fewer when compared to growth based on mergers & acquisitions or different forms of alliances. Third, Elektrim's relationship with government is complex and refutes the simplified dichotomy of markets vs. governments. This raises the issue of to what extent post-socialist governments operate as a 'compensatory mechanism' on which firms like Elektrim can rely to grow. Fourth, the opening of the CEECs has led to relocations of EU and other MNCs into this region with the result that they are also transferring the oligopolistic competition from EU into new markets. The case of Elektrim shows how CEE companies and goverment regulations become factors in the oligopolistic competition between big EU companies. CEE companies and governments may use this competition to their advantage but also their limited bargaining powers may lead to outcomes unfavourable to them
    corecore