4,747 research outputs found

    Automotive radar – A signalprocessing perspective oncurrent technology andfuture systems

    Get PDF
    IEEE Distinguished Microwave LecturerRadar systems are a key technology of modern vehicle safety & comfort systems. Without doubt it will only be the symbiosis of Radar, Lidar and camera-based sensor systems which can enable advanced autonomous driving functions soon. Several next generation car models are such announced to have more than 10 radar sensors per vehicle, allowing for the generation of a radar-based 360° surround view necessary for advanced driver assistance as well as semi-autonomous operation. Hence the demand from the automotive industry for high-precision, multi-functional radar systems is higher than ever before, and the increased requirements on functionality and sensor capabilities lead to research and development activities in the field of automotive radar systems in both industry and academic worlds. Current automotive radar technology is almost exclusively based on the principle of frequency-modulated continuous-wave (FMCW) radar, which has been well known for several decades. However, together with an increase of hardware capabilities such as higher carrier frequencies, modulation bandwidths and ramp slopes, as well as a scaling up of simultaneously utilized transmit and receive channels with independent modulation features, new degrees of freedom have been added to traditional FMCW radar system design and signal processing. The anticipated presentation will accordingly introduce the topic with a review on the fundamentals of radar and FMCW radar. After introducing the system architecture of traditional and modern automotive FMCW radar sensors, with e.g. insights into the concepts of distributed or centralized processing and sensor data fusion, the presentation will dive into the details of fast-chirp FMCW processing – the modulation mode which is used by the vast majority of current automotive FMCW radar systems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Observability analysis and optimal sensor placement in stereo radar odometry

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Localization is the key perceptual process closing the loop of autonomous navigation, allowing self-driving vehicles to operate in a deliberate way. To ensure robust localization, autonomous vehicles have to implement redundant estimation processes, ideally independent in terms of the underlying physics behind sensing principles. This paper presents a stereo radar odometry system, which can be used as such a redundant system, complementary to other odometry estimation processes, providing robustness for long-term operability. The presented work is novel with respect to previously published methods in that it contains: (i) a detailed formulation of the Doppler error and its associated uncertainty; (ii) an observability analysis that gives the minimal conditions to infer a 2D twist from radar readings; and (iii) a numerical analysis for optimal vehicle sensor placement. Experimental results are also detailed that validate the theoretical insights.Peer ReviewedPostprint (author's final draft

    Automated Ground Truth Estimation For Automotive Radar Tracking Applications With Portable GNSS And IMU Devices

    Full text link
    Baseline generation for tracking applications is a difficult task when working with real world radar data. Data sparsity usually only allows an indirect way of estimating the original tracks as most objects' centers are not represented in the data. This article proposes an automated way of acquiring reference trajectories by using a highly accurate hand-held global navigation satellite system (GNSS). An embedded inertial measurement unit (IMU) is used for estimating orientation and motion behavior. This article contains two major contributions. A method for associating radar data to vulnerable road user (VRU) tracks is described. It is evaluated how accurate the system performs under different GNSS reception conditions and how carrying a reference system alters radar measurements. Second, the system is used to track pedestrians and cyclists over many measurement cycles in order to generate object centered occupancy grid maps. The reference system allows to much more precisely generate real world radar data distributions of VRUs than compared to conventional methods. Hereby, an important step towards radar-based VRU tracking is accomplished.Comment: 10 pages, 9 figures, accepted paper for 2019 20th International Radar Symposium (IRS), Ulm, Germany, June 2019. arXiv admin note: text overlap with arXiv:1905.1121
    corecore