709 research outputs found

    Who wants to join me? Companion recommendation in location based social networks

    Get PDF
    We consider the problem of identifying possible companions for a user who is planning to visit a given venue. Specifically, we study the task of predicting which of the user's current friends, in a location based social network (LBSN), are most likely to be interested in joining the visit. An important underlying assumption of our model is that friendship relations can be clustered based on the kinds of interests that are shared by the friends. To identify these friendship types, we use a latent topic model, which moreover takes into account the geographic proximity of the user to the location of the proposed venue. To the best of our knowledge, our model is the first that addresses the task of recommending companions for a proposed activity. While a number of existing topic models can be adapted to make such predictions, we experimentally show that such methods are significantly outperformed by our model

    ์†Œ์…œ ๋„คํŠธ์›Œํฌ์™€ ์ด์ปค๋จธ์Šค ํ”Œ๋žซํผ์—์„œ์˜ ์ž ์žฌ ๋„คํŠธ์›Œํฌ ๋งˆ์ด๋‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2023. 2. ๊ถŒํƒœ๊ฒฝ.์›น ๊ธฐ๋ฐ˜ ์„œ๋น„์Šค์˜ ํญ๋ฐœ์ ์ธ ๋ฐœ๋‹ฌ๋กœ ์‚ฌ์šฉ์ž๋“ค์€ ์˜จ๋ผ์ธ ์ƒ์—์„œ ํญ๋„“๊ฒŒ ์—ฐ๊ฒฐ๋˜๊ณ  ์žˆ๋‹ค. ์˜จ๋ผ์ธ ํ”Œ๋žซํผ ์ƒ์—์„œ, ์‚ฌ์šฉ์ž๋“ค์€ ์„œ๋กœ์—๊ฒŒ ์˜ํ–ฅ์„ ์ฃผ๊ณ ๋ฐ›์œผ๋ฉฐ ์˜์‚ฌ ๊ฒฐ์ •์— ๊ทธ๋“ค์˜ ๊ฒฝํ—˜๊ณผ ์˜๊ฒฌ์„ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ธ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋Œ€ํ‘œ์ ์ธ ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์ธ ์†Œ์…œ ๋„คํŠธ์›Œํฌ ์„œ๋น„์Šค์™€ ์ด์ปค๋จธ์Šค ํ”Œ๋žซํผ์—์„œ์˜ ์‚ฌ์šฉ์ž ํ–‰๋™์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์˜จ๋ผ์ธ ํ”Œ๋žซํผ์—์„œ์˜ ์‚ฌ์šฉ์ž ํ–‰๋™์€ ์‚ฌ์šฉ์ž์™€ ํ”Œ๋žซํผ ๊ตฌ์„ฑ ์š”์†Œ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์‚ฌ์šฉ์ž์˜ ๊ตฌ๋งค๋Š” ์‚ฌ์šฉ์ž์™€ ์ƒํ’ˆ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ, ์‚ฌ์šฉ์ž์˜ ์ฒดํฌ์ธ์€ ์‚ฌ์šฉ์ž์™€ ์žฅ์†Œ ๊ฐ„์˜ ๊ด€๊ณ„๋กœ ๋‚˜ํƒ€๋‚ด์ง„๋‹ค. ์—ฌ๊ธฐ์— ํ–‰๋™์˜ ์‹œ๊ฐ„๊ณผ ๋ ˆ์ดํŒ…, ํƒœ๊ทธ ๋“ฑ์˜ ์ •๋ณด๊ฐ€ ํฌํ•จ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‘ ํ”Œ๋žซํผ์—์„œ ์ •์˜๋œ ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ๊ทธ๋ž˜ํ”„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ž ์žฌ ๋„คํŠธ์›Œํฌ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์œ„์น˜ ๊ธฐ๋ฐ˜์˜ ์†Œ์…œ ๋„คํŠธ์›Œํฌ ์„œ๋น„์Šค์˜ ๊ฒฝ์šฐ ํŠน์ • ์žฅ์†Œ์— ๋ฐฉ๋ฌธํ•˜๋Š” ์ฒดํฌ์ธ ํ˜•์‹์œผ๋กœ ๋งŽ์€ ํฌ์ŠคํŠธ๊ฐ€ ๋งŒ๋“ค์–ด์ง€๋Š”๋ฐ, ์‚ฌ์šฉ์ž์˜ ์žฅ์†Œ ๋ฐฉ๋ฌธ์€ ์‚ฌ์šฉ์ž ๊ฐ„์— ์‚ฌ์ „์— ์กด์žฌํ•˜๋Š” ์นœ๊ตฌ ๊ด€๊ณ„์— ์˜ํ•ด ์˜ํ–ฅ์„ ํฌ๊ฒŒ ๋ฐ›๋Š”๋‹ค. ์‚ฌ์šฉ์ž ํ™œ๋™ ๋„คํŠธ์›Œํฌ์˜ ์ €๋ณ€์— ์ž ์žฌ๋œ ์‚ฌ์šฉ์ž ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์€ ํ™œ๋™ ์˜ˆ์ธก์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์ง€๋„ํ•™์Šต ๊ธฐ๋ฐ˜์œผ๋กœ ํ™œ๋™ ๋„คํŠธ์›Œํฌ๋กœ๋ถ€ํ„ฐ ์‚ฌ์šฉ์ž ๊ฐ„ ์‚ฌํšŒ์  ๊ด€๊ณ„๋ฅผ ์ถ”์ถœํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐ์กด์— ์—ฐ๊ตฌ๋˜์—ˆ๋˜ ๋ฐฉ๋ฒ•๋“ค์€ ๋‘ ์‚ฌ์šฉ์ž๊ฐ€ ๋™์‹œ์— ๋ฐฉ๋ฌธํ•˜๋Š” ํ–‰์œ„์ธ co-visitation์„ ์ค‘์ ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์‚ฌ์šฉ์ž ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ฑฐ๋‚˜, ๋„คํŠธ์›Œํฌ ์ž„๋ฒ ๋”ฉ ๋˜๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง(GNN)์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‘œํ˜„ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ ์ฃผ๊ธฐ์ ์ธ ๋ฐฉ๋ฌธ์ด๋‚˜ ์žฅ๊ฑฐ๋ฆฌ ์ด๋™ ๋“ฑ์œผ๋กœ ๋Œ€ํ‘œ๋˜๋Š” ์‚ฌ์šฉ์ž์˜ ํ–‰๋™ ํŒจํ„ด์„ ์ž˜ ํฌ์ฐฉํ•˜์ง€ ๋ชปํ•œ๋‹ค. ํ–‰๋™ ํŒจํ„ด์„ ๋” ์ž˜ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด, ANES๋Š” ์‚ฌ์šฉ์ž ์ปจํ…์ŠคํŠธ ๋‚ด์—์„œ ์‚ฌ์šฉ์ž์™€ ๊ด€์‹ฌ ์ง€์ (POI) ๊ฐ„์˜ ์ธก๋ฉด(Aspect) ์ง€ํ–ฅ ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•œ๋‹ค. ANES๋Š” User-POI ์ด๋ถ„ ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ์—์„œ ์‚ฌ์šฉ์ž์˜ ํ–‰๋™์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ธก๋ฉด์œผ๋กœ ๋‚˜๋ˆ„๊ณ , ๊ฐ๊ฐ์˜ ๊ด€๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ํ–‰๋™ ํŒจํ„ด์„ ์ถ”์ถœํ•˜๋Š” ์ตœ์ดˆ์˜ ๋น„์ง€๋„ํ•™์Šต ๊ธฐ๋ฐ˜ ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ์‹ค์ œ LBSN ๋ฐ์ดํ„ฐ์—์„œ ์ˆ˜ํ–‰๋œ ๊ด‘๋ฒ”์œ„ํ•œ ์‹คํ—˜์—์„œ, ANES๋Š” ๊ธฐ์กด์— ์ œ์•ˆ๋˜์—ˆ๋˜ ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ์œ„์น˜ ๊ธฐ๋ฐ˜ ์†Œ์…œ ๋„คํŠธ์›Œํฌ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ, ์ด์ปค๋จธ์Šค์˜ ๋ฆฌ๋ทฐ ์‹œ์Šคํ…œ์—์„œ๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ๋Šฅ๋™์ ์ธ ํŒ”๋กœ์šฐ/ํŒ”๋กœ์ž‰ ๋“ฑ์˜ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•˜์ง€ ์•Š๊ณ ๋„ ํ”Œ๋žซํผ์— ์˜ํ•ด ์„œ๋กœ์˜ ์ •๋ณด๋ฅผ ์ฃผ๊ณ ๋ฐ›๊ณ  ์˜ํ–ฅ๋ ฅ์„ ํ–‰์‚ฌํ•˜๊ฒŒ ๋œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์‚ฌ์šฉ์ž๋“ค์˜ ํ–‰๋™ ํŠน์„ฑ์€ ๋ฆฌ๋ทฐ ์ŠคํŒธ์— ์˜ํ•ด ์‰ฝ๊ฒŒ ์•…์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ฆฌ๋ทฐ ์ŠคํŒธ์€ ์‹ค์ œ ์‚ฌ์šฉ์ž์˜ ์˜๊ฒฌ์„ ์ˆจ๊ธฐ๊ณ  ํ‰์ ์„ ์กฐ์ž‘ํ•˜์—ฌ ์ž˜๋ชป๋œ ์ •๋ณด๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ด๋ฃจ์–ด์ง„๋‹ค. ๋‚˜๋Š” ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ์ž ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์—์„œ ์‚ฌ์šฉ์ž ๊ฐ„ ์‚ฌ์ „ ๊ณต๋ชจ์„ฑ(Collusiveness)์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ฐพ๊ณ , ์ด๋ฅผ ์ŠคํŒธ ํƒ์ง€์— ํ™œ์šฉํ•œ ๋ฐฉ๋ฒ•์ธ SC-Com์„ ์ œ์•ˆํ•œ๋‹ค. SC-Com์€ ํ–‰๋™์˜ ๊ณต๋ชจ์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ์‚ฌ์šฉ์ž ๊ฐ„ ๊ณต๋ชจ ์ ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ํ•ด๋‹น ์ ์ˆ˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ „์ฒด ์‚ฌ์šฉ์ž๋ฅผ ์œ ์‚ฌํ•œ ์‚ฌ์šฉ์ž๋“ค์˜ ์ปค๋ฎค๋‹ˆํ‹ฐ๋กœ ๋ถ„๋ฅ˜ํ•œ๋‹ค. ๊ทธ ํ›„ ์ŠคํŒธ ์œ ์ €์™€ ์ผ๋ฐ˜ ์œ ์ €๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š” ๋ฐ์— ์ค‘์š”ํ•œ ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜์—ฌ ๊ฐ๋… ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋ถ„๋ฅ˜๊ธฐ์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. SC-Com์€ ๊ณต๋ชจ์„ฑ์„ ๊ฐ–๋Š” ์ŠคํŒธ ์œ ์ €์˜ ์ง‘ํ•ฉ์„ ํšจ๊ณผ์ ์œผ๋กœ ํƒ์ง€ํ•œ๋‹ค. ์‹ค์ œ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•œ ์‹คํ—˜์—์„œ, SC-Com์€ ๊ธฐ์กด ๋…ผ๋ฌธ๋“ค ๋Œ€๋น„ ์ŠคํŒธ ํƒ์ง€์— ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์œ„ ๋…ผ๋ฌธ์—์„œ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์—ฐ๊ตฌ๋œ ์•”์‹œ์  ์—ฐ๊ฒฐ๋ง ํƒ์ง€ ๋ชจ๋ธ์€ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋„ ์‚ฌ์ „์— ์—ฐ๊ฒฐ๋˜์—ˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ์‚ฌ์šฉ์ž๋“ค์„ ์˜ˆ์ธกํ•˜๋ฏ€๋กœ, ์‹ค์‹œ๊ฐ„ ์œ„์น˜ ๋ฐ์ดํ„ฐ๋‚˜, ์•ฑ ์‚ฌ์šฉ ๋ฐ์ดํ„ฐ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์—์„œ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜์—ฌ ๊ด‘๊ณ  ์ถ”์ฒœ ์‹œ์Šคํ…œ์ด๋‚˜, ์•…์„ฑ ์œ ์ € ํƒ์ง€ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.Following the exploding usage on online services, people are connected with each other more broadly and widely. In online platforms, people influence each other, and have tendency to reflect their opinions in decision-making. Social Network Services (SNSs) and E-commerce are typical example of online platforms. User behaviors in online platforms can be defined as relation between user and platform components. A user's purchase is a relationship between a user and a product, and a user's check-in is a relationship between a user and a place. Here, information such as action time, rating, tag, etc. may be included. In many studies, platform user behavior is represented in graph form. At this time, the elements constituting the nodes of the graph are composed of objects such as users and products and places within the platform, and the interaction between the platform elements and the user can be expressed as two nodes being connected. In this study, I present studies to identify potential networks that affect the user's behavior graph defined on the two platforms. In ANES, I focus on representation learning for social link inference based on user trajectory data. While traditional methods predict relations between users by considering hand-crafted features, recent studies first perform representation learning using network/node embedding or graph neural networks (GNNs) for downstream tasks such as node classification and link prediction. However, those approaches fail to capture behavioral patterns of individuals ingrained in periodical visits or long-distance movements. To better learn behavioral patterns, this paper proposes a novel scheme called ANES (Aspect-oriented Network Embedding for Social link inference). ANES learns aspect-oriented relations between users and Point-of-Interests (POIs) within their contexts. ANES is the first approach that extracts the complex behavioral pattern of users from both trajectory data and the structure of User-POI bipartite graphs. Extensive experiments on several real-world datasets show that ANES outperforms state-of-the-art baselines. In contrast to active social networks, people are connected to other users regardless of their intentions in some platforms, such as online shopping websites and restaurant review sites. They do not have any information about each other in advance, and they only have a common point which is that they have visited or have planned to visit same place or purchase a product. Interestingly, users have tendency to be influenced by the review data on their purchase intentions. Unfortunately, this instinct is easily exploited by opinion spammers. In SC-Com, I focus on opinion spam detection in online shopping services. In many cases, my decision-making process is closely related to online reviews. However, there have been threats of opinion spams by hired reviewers increasingly, which aim to mislead potential customers by hiding genuine consumers opinions. Opinion spams should be filed up collectively to falsify true information. Fortunately, I propose the way to spot the possibility to detect them from their collusiveness. In this paper, I propose SC-Com, an optimized collusive community detection framework. It constructs the graph of reviewers from the collusiveness of behavior and divides a graph by communities based on their mutual suspiciousness. After that, I extract community-based and temporal abnormality features which are critical to discriminate spammers from other genuine users. I show that my method detects collusive opinion spam reviewers effectively and precisely from their collective behavioral patterns. In the real-world dataset, my approach showed prominent performance while only considering primary data such as time and ratings. These implicit network inference models studied on various data in this thesis predicts users who are likely to be pre-connected to unlabeled data, so it is expected to contribute to areas such as advertising recommendation systems and malicious user detection by providing useful information.Chapter 1 Introduction 1 Chapter 2 Social link Inference in Location-based check-in data 5 2.1 Background 5 2.2 Related Work 12 2.3 Location-based Social Network Service Data 15 2.4 Aspect-wise Graph Decomposition 18 2.5 Aspect-wise Graph learning 19 2.6 Inferring Social Relation from User Representation 21 2.7 Performance Analysis 23 2.8 Discussion and Implications 26 2.9 Summary 34 Chapter 3 Detecting collusiveness from reviews in Online platforms and its application 35 3.1 Background 35 3.2 Related Work 39 3.3 Online Review Data 43 3.4 Collusive Graph Projection 44 3.5 Reviewer Community Detection 47 3.6 Review Community feature extraction and spammer detection 51 3.7 Performance Analysis 53 3.8 Discussion and Implications 55 3.9 Summary 62 Chapter 4 Conclusion 63๋ฐ•

    Toward Point-of-Interest Recommendation Systems: A Critical Review on Deep-Learning Approaches

    Get PDF
    In recent years, location-based social networks (LBSNs) that allow members to share their location and provide related services, and point-of-interest (POIs) recommendations which suggest attractive places to visit, have become noteworthy and useful for users, research areas, industries, and advertising companies. The POI recommendation system combines different information sources and creates numerous research challenges and questions. New research in this field utilizes deep-learning techniques as a solution to the issues because it has the ability to represent the nonlinear relationship between users and items more effectively than other methods. Despite all the obvious improvements that have been made recently, this field still does not have an updated and integrated view of the types of methods, their limitations, features, and future prospects. This paper provides a systematic review focusing on recent research on this topic. First, this approach prepares an overall view of the types of recommendation methods, their challenges, and the various influencing factors that can improve model performance in POI recommendations, then it reviews the traditional machine-learning methods and deep-learning techniques employed in the POI recommendation and analyzes their strengths and weaknesses. The recently proposed models are categorized according to the method used, the dataset, and the evaluation metrics. It found that these articles give priority to accuracy in comparison with other dimensions of quality. Finally, this approach introduces the research trends and future orientations, and it realizes that POI recommender systems based on deep learning are a promising future work

    Time-aware metric embedding with asymmetric projection for successive POI recommendation

    Full text link
    ยฉ 2018, Springer Science+Business Media, LLC, part of Springer Nature. Successive Point-of-Interest (POI) recommendation aims to recommend next POIs for a given user based on this userโ€™s current location. Indeed, with the rapid growth of Location-based Social Networks (LBSNs), successive POI recommendation has become an important and challenging task, since it can help to meet usersโ€™ dynamic interests based on their recent check-in behaviors. While some efforts have been made for this task, most of them do not capture the following properties: 1) The transition between consecutive POIs in user check-in sequences presents asymmetric property, however existing approaches usually assume the forward and backward transition probabilities between a POI pair are symmetric. 2) Users usually prefer different successive POIs at different time, but most existing studies do not consider this dynamic factor. To this end, in this paper, we propose a time-aware metric embedding approach with asymmetric projection (referred to as MEAP-T) for successive POI recommendation, which takes the above two properties into consideration. In addition, we exploit three latent Euclidean spaces to project the POI-POI, POI-user, and POI-time relationships. Finally, the experimental results on two real-world datasets show MEAP-T outperforms the state-of-the-art methods in terms of both precision and recall
    • โ€ฆ
    corecore