187 research outputs found

    Modular Las Vegas Algorithms for Polynomial Absolute Factorization

    Get PDF
    Let f(X,Y) \in \ZZ[X,Y] be an irreducible polynomial over \QQ. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of ff, or more precisely, of ff modulo some prime integer pp. The same idea of choosing a pp satisfying some prescribed properties together with LLLLLL is used to provide a new strategy for absolute factorization of f(X,Y)f(X,Y). We present our approach in the bivariate case but the techniques extend to the multivariate case. Maple computations show that it is efficient and promising as we are able to factorize some polynomials of degree up to 400

    Computing Puiseux series : a fast divide and conquer algorithm

    Get PDF
    Let F∈K[X,Y]F\in \mathbb{K}[X, Y ] be a polynomial of total degree DD defined over a perfect field K\mathbb{K} of characteristic zero or greater than DD. Assuming FF separable with respect to YY , we provide an algorithm that computes the singular parts of all Puiseux series of FF above X=0X = 0 in less than O~(Dδ)\tilde{\mathcal{O}}(D\delta) operations in K\mathbb{K}, where δ\delta is the valuation of the resultant of FF and its partial derivative with respect to YY. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of FF in K[[X]][Y]\mathbb{K}[[X]][Y ] up to an arbitrary precision XNX^N with O~(D(δ+N))\tilde{\mathcal{O}}(D(\delta + N )) arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by FF with O~(D3)\tilde{\mathcal{O}}(D^3) arithmetic operations and, if K=Q\mathbb{K} = \mathbb{Q}, with O~((h+1)D3)\tilde{\mathcal{O}}((h+1)D^3) bit operations using a probabilistic algorithm, where hh is the logarithmic heigth of FF.Comment: 27 pages, 2 figure

    Resolving zero-divisors using Hensel lifting

    Full text link
    Algorithms which compute modulo triangular sets must respect the presence of zero-divisors. We present Hensel lifting as a tool for dealing with them. We give an application: a modular algorithm for computing GCDs of univariate polynomials with coefficients modulo a radical triangular set over the rationals. Our modular algorithm naturally generalizes previous work from algebraic number theory. We have implemented our algorithm using Maple's RECDEN package. We compare our implementation with the procedure RegularGcd in the RegularChains package.Comment: Shorter version to appear in Proceedings of SYNASC 201

    A lifting and recombination algorithm for rational factorization of sparse polynomials

    Get PDF
    We propose a new lifting and recombination scheme for rational bivariate polynomial factorization that takes advantage of the Newton polytope geometry. We obtain a deterministic algorithm that can be seen as a sparse version of an algorithm of Lecerf, with now a polynomial complexity in the volume of the Newton polytope. We adopt a geometrical point of view, the main tool being derived from some algebraic osculation criterions in toric varieties.Comment: 22 page

    Interpolation and List Decoding of Algebraic Codes

    Get PDF
    • …
    corecore